
1

Introduction to R and basics in statistics
Lecture notes

Stefanie von Felten & Pius Korner-Nievergelt, September 2012

Contents
Preface .. 3

1 First steps in R .. 3

1.1 What is R? ... 3

1.2 R Download and Environment .. 3

1.3 A first R session ... 4

1.3.1 Exploring the R console ... 4

1.3.2 Functions and objects ... 5

1.4 More specific topics ... 6

1.4.1 Adding comments and layout ... 6

1.4.2 Vectors and data frames ... 7

1.4.3 Reading data from a file ... 7

1.4.4 Looking at data ... 8

1.4.5 Manipulating data ... 10

1.5 Additional Tips .. 10

1.5.1 The working directory .. 10

1.5.2 The R workspace .. 11

1.5.3 Trouble shooting .. 11

1.5.4 Write data created in R to a file .. 12

1.5.5 Changing basic settings .. 12

1.5.6 Date and time formats .. 12

1.6 Add-on packages ... 13

1.7 R-help .. 14

1.8 Further reading .. 14

2 Graphics ... 15

2.1 Some basic comments ... 15

2.2 A worked example ... 17

2.2.1 Setting up the frame ... 18

2.2.2 Customizing axes ... 20

2.2.3 Colors and background elements ... 21

2.2.4 The actual data ... 22

2

2.3 Exporting graphics ... 22

2.4 Some more options .. 23

2.4.1 More custom plots and log-axes ... 23

2.4.2 Getting values from the graphic ... 24

2.4.3 Overlaying graphs; figure within a figure .. 25

2.4.4 More than one graph .. 25

2.4.5 Symbols and fonts and pixel images .. 27

2.5 Specific graphics packages .. 28

2.6 Literature ... 28

3 Probability distributions ... 29

3.1 The binomial distribution .. 29

3.2 The Poisson distribution .. 31

3.3 Discrete and continuous distributions .. 33

3.4 The normal distribution ... 33

3.4.1 The central limit theorem ... 35

3.5 Note on the generation of random numbers .. 36

3.6 Literature ... 36

4 Summary statistics .. 37

4.1 Measures of Location .. 37

4.2 Measures of dispersion .. 38

4.3 Quantiles and the boxplot .. 38

4.4 The standard error of the mean .. 39

4.5 Confidence intervals .. 39

4.6 Mean and Variance of different distributions .. 40

4.7 Literature ... 40

5 Classical statistical tests ... 41

5.1 Null-hypothesis testing .. 41

5.1.1 Test statistics .. 42

5.2 The t test family ... 42

5.2.1 One-sample t test .. 42

5.2.2 The two-sample t test ... 44

5.2.3 The t test for paired samples .. 47

5.3 Rank-based alternatives to t tests ... 48

5.4 Tests for categorical data ... 49

5.4.1 Compare a proportion to a reference value: the binomial test 49

5.4.2 Compare two proportions:
2
 test ... 49

5.5 Outlook: linear models .. 52

3

5.6 Literature ... 53

Preface

We wrote these lecture notes between July and September 2012 in order to accompany

several courses we teach. The notes aim to provide a basic introduction to using R for

drawing graphics and doing basic statistical analyses. For each chapter, we provide a text

file with the plain R-Code, ready to be run in R.

We hope that you are going to find this document and the contributed R-Code useful. If you

find mistakes or have feedback of any kind, we will be grateful to know, in order to make

improvements.

Regarding the contents, we have drawn heavily on various books and other sources. We do

not attempt to claim these contents to be our own intellectual property and give you the

references used at the end of each chapter. However, we have of course chosen topics and

bits of R-Code which we find useful in our own work as statisticians and biologists.

1 First steps in R

1.1 What is R?

R is a software package for statistics and graphics, which is free in two ways: free download

and free source code (see www.r-project.org). More technically, R is a language and

environment for statistical computing and graphics under the terms of the (www.gnu.org)

Free Software Foundation's GNU General Public License in source code form.

The current R is the result of a collaborative effort with contributions from all over the world.

R was initially written by Robert Gentleman and Ross Ihaka—also known as "R & R" of the

Statistics Department of the University of Auckland. Since mid-1997 there has been a core

group with write access to the R source (see www.r-project.org/contributors.html).

R is similar to the S language and environment which was developed at Bell Laboratories

(formerly AT&T, now Lucent Technologies) by John Chambers and colleagues. Most code

written for S runs unaltered in R.

A strength of R is that along with statistical analyses, well-designed publication-quality

graphics can be produced. R runs on all operating systems (Linux, Mac, Windows).

1.2 R Download and Environment

R is freely available from a network of CRAN mirror sites (CRAN: Comprehensive R

Archive Network). To download and install R go to www.r-project.org and select a CRAN

mirror nearby.

R works code driven via a console, not with menus that you may be used to from other

software. The R-console is just a calculator. To document the steps of your analyses, you will

write your R code in a text editor (except short bits of code that you do not need to save).

From the text editor, you can copy or send (if your editor interacts with R) the code to the R

console to execute the function calls. You can save results produced by R to text files or

produce graphics in various formats. The R-console itself is normally not saved when you

close your R session. However, to be able to reconstruct your analyses any time, you should

save the text file(s) containing your R code.

Although you can use any text editor to write and save R code (e.g., Notepad), it is

recommended to install a text editor that recognises the R language, such as Tinn-R

(http://www.sciviews.org/Tinn-R), RStudio (www.rstudio.org), or Emacs

4

(http://www.gnu.org/software/emacs/). Advantages of such editors are direct interaction with

R and syntax-highlighting. The latter means that different colours are used for commands,

arguments and comments, and that corresponding brackets in nested commands are visible.

Such syntax highlighting is extremely useful once you have more than just a few lines of

code. You can also use the editor that comes with the R installation. However, syntax-

highlighting is only provided in the Mac version. We thus recommend using Tinn-R for

Windows and the internal editor for Mac.

1.3 A first R session

To start an R session, you can start Tinn-R. Then start R from Tinn-R (“R” in the menu bar,

choose “Start/Close and connections”, then “RGui”). Alternatively, you can start R and your

preferred text editor separately. If you use the editor provided by R itself, open it from within

R using the "open script" or "new script" buttons. An advantage of the R editor over the other

editors is that it works on all systems without additional installation efforts and normally it

corresponds with the R console without problems (the short key "Ctrl + R" sends lines or

selections to the R console).

First, we will explore the R-console. Although it is not necessary for this purpose to save all

your R code, we recommend that you do so. Write and save all the code you wish to keep in

your text file. However, to explore the behaviour of the console, you will sometimes write

into the console directly.

1.3.1 Exploring the R console

When you have started R and a text editor, you can write a mathematical expression such as

15.3 * 5 into the text editor and then send the line to the R console by using the predefined

short key or copy/paste. You will see your input followed by the output (R’s answer) in the R-

console:

> 15.3 * 5

[1] 76.5

>

The > sign is the prompt sign. It means that the R console is ready to accept commands. Our

command (15.3*5) appears next to the prompt sign. The next line shows the result. The [1]

tells us that this is the first element of the output (there is only one element in this example).

The next line shows the prompt sign again. This means that R has done the calculations and is

ready to accept the next command. If your command is not complete within one line, a "+"

appears instead of the prompt sign and you can simply add the missing code on this line.

> 15.3 *

+ 5

[1] 76.5

>

If one command is complete at the end of the line, R is ready to accept the next command on

the next line. Two commands on the same line need to be separated by a semicolon. The

output is given on separate lines, in the same order as the commands were given.

> 15.3 * 5; 3 * (4 + 5)

[1] 76.5

[1] 27

>

5

If your cursor is next to the prompt sign, you can use up and down arrows to go back to

previous commands. While typing commands, use the horizontal arrows to move within the

line. With long commands, it can save time to go back to a previous command and quickly

edit it. For now, just try to go back to 15.3 * 5 by using the up arrow. As from now, we will

give R code without the prompt signs.

1.3.2 Functions and objects

Instead of arithmetic signs you can use inbuilt functions such as mean, log(), sqrt(), and sin().

sqrt(30)

[1] 5.477226

You will see later, that you can also write your own functions.

R is an object oriented programming language. This means that you can create objects, using

the left pointing arrow "<-" (means assign) to define them, and use these objects for further

analyses.

x <- 5+39

4*x

[1] 176

sqrt(x)

[1] 6.63325

R code consists of two fundamentally different elements: functions and objects. Functions are

commands that tell R to do something. A function may be applied to an object, and the result

of applying a function is usually an object, too.

All function calls need to be followed by parentheses. Functions can either do something on

their own, as e.g., help.start(), or they can do something with something, e.g., sqrt(x). Here,

the "object" x is given as an argument to the function sqrt(). Most functions need several

arguments (not all of them being objects) to do what they are supposed to. Here is an

example:

mean(c(0,6,8,3,NA,3,6,6), na.rm=TRUE)

[1] 4.571429

To obtain a mean of a vector of numbers that contains a missing value, specified by "NA" in

the R language, a second argument, na.rm=TRUE (NA-remove is true), has to be given to tell

R to ignore the missing value. Note that we have not given the argument name for the first

argument (mean(x=c(...), na.rm=TRUE)), because the function mean() expects as first

argument x, a vector that contains the values of which the arithmetic mean should be

calculated. But we have to give the name of the argument na.rm because as second argument

"trim" is expected rather than na.rm. The rule is that argument names do not need to be given

if they appear in the expected order (positional matching). Function arguments do not need to

be given in the expected order but then, argument names are required (keyword matching).

What is the expected order? We see this in the "usage" section of the help file for each

function. Help files can be opened by typing the name of the function preceded by a question

mark, such as:

?mean

From the line:

6

mean(x, trim = 0, na.rm = FALSE, ...)

we see that the first argument is x, the second trim, the third na.rm, and that trim and na.rm

have default values 0 and FALSE, respectively. This means that you do not need to specify a

value for these arguments if you are happy with the default value. However, since x has no

default value, we must specify x to make the function mean() work. The following variants

are allowed (among others):

mean(c(0,6,8,3,NA,3,6,6), 0, TRUE)

TRUE is now the third argument and therefore matched with na.rm.

mean(na.rm=TRUE, x=c(0,6,8,3,NA,3,6,6))

Here, the argument names are required because the order is not as expected.

In this example, you see why we need to use the function c() to combine (or concatenate) the

numbers into a vector. If we use

mean(4,7,2,6)

the function returns 4, because it has calculated the arithmetic mean of the first element within

the brackets which is 4. Unfortunately, it does not warn you that trim=7 and na.rm=2 do not

make sense! The correct way to obtain a mean of 4, 7, 2, and 6 is

mean(c(4,7,2,6))

R is case-sensitive. Mean(c(4,7,2,6)) does not work.

1.4 More specific topics

1.4.1 Adding comments and layout

In addition to functions and objects, R code may contain comments that are not interpreted by

R. In fact, comments are extremely important to enable yourself and others to understand the

individual steps of your analysis, even after months or years. Comments are introduced by the

hash sign (#). Everything on a line that is preceded by “#” is not interpreted by R.

Comments may include explanations (what is done and why), references (to other files or to

literature), titles that help structuring your code into logical units, or lines of code that you

currently do not want to be executed. Here is a short example:

Use R as a pocket calculator

1+1

33 + 56 # addition

sqrt(100) # square root

When documenting an analysis, your layout options are somewhat limited. For example, you

cannot use different font types. However, some of the options include for example:

 use a different number of # to indicate the importance of a comment (sections,

subsections, individual comments)

 use other symbols to follow #, for example # -------------------------------------

 to mark the beginning of a new section

 use capital letters for titles

 number sections of your code

7

 use enough white space (empty lines, space between characters) to make your code

easy to read

1.4.2 Vectors and data frames

Create two vectors and see what you can do with them:

x <- c(1,4,6,7) # x is a vector with 4 elements

x

y <- c(2,3,4,5) # y is another vector with 4 elements

y

x + y # adding elements of vectors

x / y # divide one vector by another

Data sets are usually stored as object of the class data.frame. A data.frame is composed of

columns (one column per variable) and rows (one row per observation). Small data sets can

be easily created in R directly:

individual data vectors - all with 6 elements

two numeric vectors

weight <- c(60,72,57,90,95,72)

height <- c(1.75,1.80,1.65,1.90,1.74,1.91)

a factor (nominal vector)

sex <- rep(c("female", "male"), each = 3)

a logical vector, i.e. containing only TRUE and FALSE

smoking <- rep(c("TRUE","FALSE"), 3)

combine vectors to data.frame

data <- data.frame(weight, height, sex, smoking); data

Tip: if you name objects, choose meaningful names that make it easy to remember what the

object is, but also keep names short. Long names are a hassle if you have to type them

repeatedly. Where you use an abbreviation, explain it with a comment (after a #-sign).

Remember that R is case-sensitive, so an object called fish cannot be accessed with Fish.

Some R packages contain their own data sets, which can be accessed easily:

library(ISwR) # loads the package ISWR

data(package="ISwR") # to see all data sets in that package

data(bcmort) # loads the data set bcmort

bcmort # to inspect bcmort

1.4.3 Reading data from a file

In most cases, however, you will prepare and store your data in a spreadsheet (Excel, Access,

LibreOffice). To read the data into R, the easiest way is to safe them as tab- or comma-

separated text file (.txt, .csv), and use the function read.table().

general function read.table

read.table(file, header=T) # default sep="" (space)

to read a comma-separated file

read.table("D:/birds.txt", header=T, sep=",")

Give the file path (where the file is located on your computer) and the file name within

quotation marks. For the path use forward slashes or double backward slashes (not single

8

backward slashes!). A file path can be given in “absolute” or “relative” form. An absolute

path works independent from your current working directory and starts with the drive on your

computer where the file is located (for example “D:/birds.txt” for a file birds.txt on drive D).

A relative path starts at your working directory (see section 4.3.3, below) that you can find

using the function getwd(). The argument header = TRUE tells R that the first line in the text

file contains the variable names. The default with read.table() is header = FALSE; since in

most cases you will have variable names in the first row, you need to type header=TRUE. If

you add the argument sep="\t", R will interpret tabulators (and only tabulators) as column

separators. By default, read.table() will assume that columns are separated by "white space",

i.e. space or tab.

As an example, and to look at a data set more closely, read the data file parusater.txt from the

web (a url can be specified instead of a local file path):

dat <- read.table("http://www.oikostat.ch/data/parusater.txt", header=TRUE)

dat

This text-file is a tab delimited text file. We do not have to define the argument sep, because

by default, the separator is ‘white space’.

If your data contains space that you don't want to be interpreted as column break (data

columns such as "comments" often contain space) you either have to tell R to only use tabs as

column separators by providing the argument sep="\t", or you first replace all spaces with e.g.

underscore in excel or word. Spreadsheet programs like Excel provide additional options for

saving data, such as comma-separated text (file extension usually .csv). Depending on your

settings, Excel will use “,” or “;” as separator (the latter is often more useful because “;” is

rarely used except as separator).

Note that there should be only one first row that contains the variable names and no second

(or more) rows containing e.g. explanations of the variables or their units of measurement.

Such information needs to be stored elsewhere. For example you may have an excel file with

the data in one worksheet and explanations on a second worksheet.

Tip: common error messages when trying to read in a .txt file are "incomplete line" or "line X

did not have Y elements". If you think that you do have the same number of elements on each

line, possibly you have a "strange" symbol in your data file; symbols that potentially cause

problems may be mutated vowels (Umlaute ä, ö, ü), semicolons, comas, single and double

quotation marks, dash, slashes. You may want to remove such symbols or replace them with

underscores (or ä with ae etc).

1.4.4 Looking at data

To have a look at the object "dat" that we have just created above, we can type "dat" into the

R console. However, for large data files this output is not convenient. Better use

str(dat)

'data.frame': 28 obs. of 6 variables:

 $ Land: Factor w/ 5 levels "Algerien","Bulgarien",..: 5 5 3 3 5 5 5 5 5 5

...

 $ age : int 4 4 3 4 3 3 3 4 3 4 ...

 $ sex : int 0 0 2 1 0 0 0 1 0 2 ...

 $ Gew : num 9.1 9.2 9.4 8.9 9.5 9.9 8.9 9.5 9 8 ...

 $ P8 : num 47 50.5 46 48.5 48.5 49 49.5 50 49 47 ...

 $ wing: num 61.5 65 59.5 63.5 64 64 65.5 64 64.5 61 ...

9

The function str() gives an overview over the object "dat". It tells you that "dat" is a

data.frame with 28 observations (rows) of 6 variables (columns). For each variable you see

how R has interpreted it, i.e., as a numeric variable ("int" for integer numbers, "num" for

decimal numbers) or as categorical variable ("Factor") variable.

Another useful function to look at the first 6 rows of a data.frame is head(). Try tail() too.

head(dat)

 Land age sex Gew P8 wing

1 Schweiz 4 0 9.1 47.0 61.5

2 Schweiz 4 0 9.2 50.5 65.0

3 Russland 3 2 9.4 46.0 59.5

4 Russland 4 1 8.9 48.5 63.5

5 Schweiz 3 0 9.5 48.5 64.0

6 Schweiz 3 0 9.9 49.0 64.0

tail(dat)

Note that a vector that consists of numbers will always be interpreted by R as integer or

numeric, unless explicitly specified as factor (using the function factor() or as.factor()). For

example, the variable “sex” in “dat” is recognised as integer, because it contains numeric

codes (0, 1, 2). Alternatively, we could have used character strings to code this vector

(“unknown”, “male”, “female”), as we did in the data frame “data”. Character vectors in data

frames are automatically interpreted as factors. As a consequence, a numeric vector becomes

a factor if you mistype 0.2 as 0,2 when “.” is defined as the decimal point (since “,” is a

character).

str(dat)

str(data)

Try also:
summary(data)

This function shows a summary of each variable in the dataset. Note the difference between

factors and numeric variables.

Elements of a data.frame can be accessed using squared brackets [row, columns]:

dat[3,5] # the third element of the fifth column

[1] 46

dat[,2] # whole second column (as no row is specified)

[1] 4 4 3 4 3 3 3 4 3 4 4 4 5 4 0 0 3 3 3 0 5 4 4 4 5 4 4 5

dat[,c(2,4)] # second and fourth column

dat[3,] # whole third row (as no column is specified)

 Land age sex Gew P8 wing

3 Russland 3 2 9.4 46 59.5

dat[dat$Land=="Schweiz",] # all Swiss observations

Alternatively, a column can be extracted by using the dollar sign.

dat$age # this is equivalent to dat[,2]

 [1] 4 4 3 4 3 3 3 4 3 4 4 4 5 4 0 0 3 3 3 0 5 4 4 4 5 4 4 5

The function table() gives contingency tables of factors. This can be useful for checking a

variable and for detecting typing errors.

table(dat$age)

10

 0 3 4 5

 3 8 13 4

table(datage, datsex)

 0 1 2

 0 2 1 0

 3 4 3 1

 4 2 8 3

 5 0 1 3

table(age=dat$age, sex=dat$sex) # to make the table self-explanatory

 sex

age 0 1 2

 0 2 1 0

 3 4 3 1

 4 2 8 3

 5 0 1 3

To apply a function such as mean() or sd() to groups, e.g. the mean of P8 (length of the 8th

primary) by sex:

tapply(dat$P8, dat$sex, mean)

 0 1 2

48.25000 50.03846 48.00000

?tapply # to find out more

1.4.5 Manipulating data

Simple data frame manipulations can easily be done in R. This is very convenient to

document all changes (in contrast to manipulations in Excel). Two basic examples:

dat$sex <- as.factor(dat$sex) # turns sex into a factor

str(dat)

add a new variable (nonsense example)

dat$age.weight <- dat$age * dat$wing # product of age and wing length

1.5 Additional Tips

1.5.1 The working directory

R refers to a working directory. To find your current working directory, type

getwd()

If you want to read a file from your working directory, you do not need to specify a file path

(just the filename). To read a file from another directory, you can either specify the file path

in the read.table() function (as we did above), or you can set the working directory

accordingly, using setwd(). Try to set the working directory on the folder “datasets”

containing the datasets used in our course. Then read the data set size.txt:

size <- read.table("size.txt", header=TRUE)

A quick way around is the function file.choose(), which will allow you to browse your folders

and choose a file manually:

size <- read.table(file.choose(), header=T) # choose size.txt manually

11

When you open an R script written with a specific R editor , the working directory is usually

automatically set to the directory where your script is located (try if it works with your editor).

If you want to read data and always get the error "cannot open the connection", type getwd()

to see where you currently are and adjust your working directory (setwd()) or your path.

1.5.2 The R workspace

During an R session, all objects you create are stored in the workspace.

ls() # lists all objects

It can be useful to remove all objects from the workspace, for example before you start

working on a new analysis. When quitting R, you are asked whether a “workspace image”

should be saved. If you do so, this workspace image is restored the next time you start R. To

remove objects (do only if you really want to):

rm(list=ls()) # removes all objects

For example, if you have accidentally saved the workspace when quitting R, you can open R

again (all your objects are back, as can be seen e.g. by typing ls()), remove all objects (using

rm(list=ls()) and select "save" when you now quit R again.

It may be advisable especially in long R scripts to have a first section that loads everything

needed such as data files and packages and that does preparatory steps, e.g. transforming

variables or calculate new variables. Each time you work on this script you sent the entire first

section to the R console and then are ready to continue, because all objects created in this first

part are now in the workspace. Sending the entire content of a script is often too time

consuming.

1.5.3 Trouble shooting

When something does not work (i.e. you get an error, or a result that does not make sense), go

through the code line by line and check each object that is created (using str() or head() if

needed). You may find that you misspelled a variable name (e.g. due to an upper-lower-case

mistake). Here is an example: you typed

apply(matrix(c(1,1,1,2,2,2),nrow=2),2,sum)

(this returns the sum of each column of the object given as the first argument) expecting R to

return the vector (3,3,3), because you think that the matrix command produces a matrix

1 1 1

2 2 2

To check that, send only

matrix(c(1,1,1,2,2,2),nrow=2)

and you will find that the values (1,1,1,2,2,2) are filled in column-wise in the matrix function,

resulting in another matrix than you intended. This step-wise inspection of a doubtful bit of

code usually helps to locate the error. In this case, the error may be corrected by adding the

argument byrow=TRUE in the matrix function (by the way: byrow=T suffices, too).

12

1.5.4 Write data created in R to a file

You may want to open a data frame (e.g. containing results) that you created in R in another

program or just to save a data frame you created for later use. We try this with the data frame

dat used above (where we added a variable age.weight):

write.table(dat, "mydata.txt", row.names=F)

Hereby, dat is the object you want to save and "mydata.txt" is the name of the text file created

in the current working directory (unless you specify a path before here.txt). row.names=F

prevents that row names are exported (often just line numbers). You can now open mydata.txt

e.g. in Word or from within Excel (be sure that in the "open" window in Excel "all readable

files" or "all files" is selected, otherwise you may not see here.txt). Excel then opens its text

import assistant, allowing you to specify that space is the separator (the default in

write.table()) so that your results are now in a table format analogous to the original data

frame in R.

1.5.5 Changing basic settings

Some interesting aspects can be controlled by the function options(). Type ?options to see the

help file. For example, you can change the number of digits printed in R. Try the following:

sqrt(8)

options(digits=12)

sqrt(8)

Note that this changes only what is printed. R stores more digits than are printed. Try also:

options(OutDec=",")

sqrt(8)

This changes the decimal sign in the R console as well as in R graphics. Furthermore, the

notation of the output can be changed by the argument scipen (e.g., exponential: 1.23e+10 or

fixed: 12300000000).

1.5.6 Date and time formats

We found that handling dates and times is tricky. Date/time variables can be defined as such,

allowing you to calculate differences between times. However, when defining a variable to be

date/time, it depends on your computer system time how exactly R defines your time object.

You easily get in troubles with time zones and summer time or if system time changes (due to

traveling or sending data to be analysed elsewhere). It is possible to define time zones, but as

far as we know it is e.g. not possible to measure time on CET (central European time) but

forcing it not to use summer time (CET during summer becomes CEST = central European

summer time). Many field data are measured on the local time but ignoring summer time.

Something measured at 2:30 in the night summer time ends will produce NA because during

this night the clock jumps from 2:00:00 h to 3:00:01 h and 2:30:00 does not exist.

One option is to use the technical time zone UTC (universal time coordinated) that has no

summer time. May be the safest way is to define a starting time point such as 1. January

00:00:00 h of the year your study started, and then calculate the seconds since then (or

whatever is the precision of time measured). Don't forget leap days (29
th

 February) if needed

and relevant.

13

We recommend to store the original time variable as a character variable and not to alter it

(it's the backup). Useful functions are strptime(), POSIXct(), date(). For example:

strptime("14.3.2009", format="%d.%m.%Y")$yday

provides the Julian day for the 14
th

 of March. However, note that the Julian day for the 1
st
 of

January is 0, so usually you want to add 1 to this value. Moreover, the leap day is always

counted, even if the year is not a leap year! So maybe you only want to add 1 for the Julian

days < 58...

1.6 Add-on packages

Maybe the most important advantage of R is that useful functions and procedures written by

users can be published and made available for everyone else on CRAN. For example, the two

ecologists J. Oksanen and B. O’Hara have written the function diversity() that calculates

different ecological diversity indices such as Shannon, Simpson, Fisher and others. The

authors have packed this function together with other functions for the analysis of community

ecology into the package “vegan” that can now be downloaded from CRAN together with

documentation and help files. There are currently more than 3000 packages available. These

packages are reviewed in the Task Views on CRAN by topics (see http://cran.rakanu.com/).

This Task Views help to find the right package for your problem.

Note that there are three different types of R-packages: the most commonly used, the fairly

often used, and the specific packages (only used by a small part of the R community). The

most commonly used packages, such as “base” or “stats” are automatically downloaded and

installed when you install R on your computer. These packages are automatically loaded to

the R console when you start R, and their functions, e.g. mean() or weighted.mean(), are

available without the need to load or install any package. By the way, all R functions are part

of a package. The package name is given in the header of the help file in curly brackets. Fairly

often used packages, such as “nlme”, are automatically downloaded and installed on your

computer when you install R but they are not automatically loaded to the R console when you

start up R. To use the function lme() that is part of the package “nlme”, you need to load the

package “nlme” to the R console by using the function library():

library(nlme)

Otherwise the function lme() cannot be found by R. Specific packages, such as “arm” or

“vegan”, are not automatically installed on your computer when you install R. Such packages

have to be downloaded and installed manually. The simplest way to install a package on your

computer is to use the function install.packages()

install.packages(“arm”) # the name of the package has to be given in quotation marks

A pop-up window will appear and you have to choose a CRAN mirror. Everything else

follows automatically. Of course, this only works when you are connected to the internet. An

alternative way is to download a zip-file of the package from the CRAN and then use the

“Install packages from local zip-files...” button from the menu packages to extract and install

the package.

This system of different package types helps to keep the basic installation of R slim, and the

time needed for installation and start up of R short.

14

1.7 R-help

As we have already seen, typing a question mark and the name of a function opens the

documentation of the function. However, this only works if the package containing the

function is loaded. R-help is therefore related to the previous section on add-on packages.

?lm # works, lm belongs to the package stats

?lmer # doesn’t work, lmer belongs to lme4

library(lme4)

?lmer # now it works

You can also search for a topic, within packages on your hard drive

??“linear model” # (fuzzy matching)

??“arcus sinus”

help.search("linear model")

??lm # (expression matching)

help.start()

Or you can search CRAN for any function and package that contains it: www.r-project.org

 -> Search -> Google – Toolbar.

Alternatively, just use your preferred search engine and type for example "arcus sinus in R".

It can also help to look at the help file of a similar function of which you know it exists, e.g.

?sin if you look for the arcus sinus, and check the "See also" section at the bottom. (If you try

?sin, you will see that this is the help file for all trigonometric functions and your function

asin is already listed at the top; but often you find hints in the "See also" section).

You will use the R-help extensively, to find out what arguments can be provided in a

function, what values the function returns and how exactly they are calculated. (For Mac

users: the Mac console and editor list the arguments in the lower window frame whenever you

are inside the brackets of a function.)

1.8 Further reading

This is a very short introduction to R. If you are keen to learn more about R and statistics, we

recommend Daalgard (2008) and Crawley (2007) for an introduction to applied statistics with

R, and Chambers (2008) for more advanced R users. Korner-Nievergelt (2010) give a German

introduction to R, similar to this one. A more detailed English introduction to R written by W.

N. Venables and D. M. Smith can be downloaded from the net (http://cran.r-

project.org/doc/manuals/R-intro.pdf).

Chambers, J. M. (2008). Software for Data Analysis, Programming with R. New York,

Springer.

Crawley, M. J. (2007). The R Book. West Sussex, John Wiley & Sons.

Daalgard, P. (2008). Introductory statistics with R. New York, Springer.

Korner-Nievergelt, F. and Hüppop. O. (2010). Das freie Statistikpaket R: Eine Einführung für

Ornithologen. Vogelwarte 48: 119-135.

15

2 Graphics

Apart from being a powerful statistics software package, R is very convenient for visualizing

data. Many built-in functions allow you to create graphics quickly and easily. However, in

order to design a graphic exactly as you want, it is often necessary to create your graphic step

by step. The flexibility you have in R is a great advantage. You can export graphics to various

formats for publication or in order to open the graphic in another program, e.g. in Adobe

Illustrator.

There are so many details about how to produce graphics that we do not attempt to give a

complete overview here. Literature listed at the end of this chapter can be consulted for a

more comprehensive overview. After a few basic comments we create an example graphic,

introducing the functions we found most useful in our own ecological/statistical work.

Thereafter, we discuss how to export graphics and focus on other topics we often encounter.

2.1 Some basic comments

The code to produce graphics can be added to the file containing the statistical analysis. For

large analyses needing extensive R-code, it can be useful to write R-code for graphics in a

separate file. When you send a graphics-function to the console, a graphics window opens

where the graphic is drawn. The window can simply be closed again, or saved to a file, or you

can copy-paste the graphic. The main function to plot data is plot().

plot() is a generic function which means that it changes its behaviour depending on the

arguments you specify. The first argument can be a function of the form
y-value ~ x-value

(the wave line is called "tilde" and it is used in R in the sense of "is a function of").

Alternatively, the first argument of plot() can contain the x-values and the second argument

the y-values, separated by a comma.

plot(data$weight ~ data$height) # scatterplot

plot(data$height, data$weight) # same plot, xy-data provided differently

plot(height~sex, data) # boxplot, because sex is a factor

In the last example, the data frame "data" is provided as an argument, allowing the use of

variable names in the formula. This only works if you use "~" (called tilde) in the first

argument. Note that you need to have the objects called data, and dat for the next couple of

commands. Both objects were created in the first chapter).

plot(dat) # plots all variables in the data set

plot(wing ~ P8, dat) # scatterplot

plot(wing ~ factor(sex), dat) # boxplot

plot(dat$wing) # index plot

Also try the following commands:

hist(dat$wing)

boxplot(wing~sex, dat)

demo(graphics)

16

Many general plotting settings can be changed with the function par(). For example, if you

want to have two separate panels in the graphics window next to one another,

par(mfrow=c(1,2)) (1 row- 2 column layout) has the effect that your first graphic only uses

up half the space of the window (left panel) and the next graphic will be drawn to the right of

it (right panel). Whenever you close the graphics window, the par-arguments are set back to

their defaults. Try out:

par(mfrow = c(1,2))

plot(wing ~ P8, dat)

plot(wing ~ factor(sex), dat)

The graphics so far have used standard x- and y-axes. Sometimes you want to plot special

axes - we do that in the worked example afterwards. As a preparation, we first deal with a

simpler case: We have 3 values each for the months March, April, and June. Here's the data:

mo <- data.frame(

 month = c("Mar","Mar","Mar","Apr","Apr","Apr","Jun","Jun","Jun"),

 month.n = c(3,3,3,4,4,4,6,6,6), # the number for the month

 value = c(5,3,7,7,6,6.5,1,4,3))

plot(mo$month.n, mo$value)

This produces a very first sketch of the graph which does not satisfy us.

plot(mo$month.n, mo$value, las=1, xlab="month", ylab="value")

las=1 has turned all axis labels horizontal, xlab and ylab receive the axes titles we want.

We want the y-axis to start at 0, and we want filled symbols:

plot(mo$month.n, mo$value, las=1, xlab="month", ylab="value",

 ylim=c(0,max(mo$value)), pch=16)

pch means point character (see 2.4.5 for some of the available characters). The ylim-argument

sets the limits of the y-axis. By default, R adds about 4% on the bottom and on the top, so that

data points don't lie on the graphics frame. If you want the x-axis to go through y=0, add the

argument yaxs="i" (y-axis style). Because some points now lie on the upper edge of the

graphics frame, we increase the upper limit of the ylim-argument by a small factor, e.g.

ylim=c(0, max(mo$value)*1.04). We will do this in the worked example, too. For now we

are happy with what we have, except for the x-axis: we want to have tick-marks

betweenmonths and the month-names centred in-between. We first plot the graphic without an

x-axis:

plot(mo$month.n, mo$value, las=1, xlab="month", ylab="value",

 ylim=c(0,max(mo$value)), pch=16, xaxt="n")

Now we are free to draw tick marks and labels where we need them. Let's agree that at x=3

we have the centre of March (where we plot the data points). Thus, March starts at 2.5 and

ends at 3.5. We can add tick marks at 2.5, 3.5, ... 6.5 - but first we need to enlarge the range of

the x-axis, because it starts somewhere just before 3 and does not include 2.5. Thus, we also

set axis limits by using the xlim-argument:

plot(mo$month.n, mo$value, las=1, xlab="month", ylab="value",

 ylim=c(0,max(mo$value)), pch=16, xaxt="n", xlim=c(2.3, 6.7))

17

Note that we don't see where x=2.5 is, because we have not drawn an x-axis yet, but the space

is there; we have more space between the data points and the left and right edges of the graph.

axis(1, 2.5:6.5, labels=F)

This draws the tick marks on axis 1 (first argument of axis: 1 = x-axis), at the values 2.5, 3.5,

4.5, 5.5, and 6.5 (abbreviated with 2.5:6.5), and it puts no labels to the tick marks (labels =

FALSE or, as seen, F is enough). Now we want the month names in-between, i.e. at the

positions 3, 4, 5, 6:

axis(1, 3:6, labels=c("Mar","Apr","May","Jun"), tick=F)

Again, we add an axis at side 1 (the x-axis), at the positions 3 through 6, at these positions we

write the labels given in the labels-argument, and, since we don't want to have tick marks at

these positions, we set tick=F.

If you don't want to have the May-label because you don't have data from May (but you still

want the data points to be spaced correctly), the last command needs to be replaced with:

axis(1, c(3,4,6), labels=c("Mar","Apr","Jun"), tick=F)

You see that you are completely free and flexible to draw whatever you want. However, this

also involves the danger of making errors. As soon as you draw the axes of a graph by hand,

you need to be extremely careful and make surethe data points come to lie at the right position

with respect to the axes.

Now you are prepared to go through the worked example. It is not a simple example (you find

many simple cases in beginners books), because its aim is to show you the flexibility you

have. Execute commands step by step, and may be you have to do the example more than

once to start to understand your possibilities (which, of course, are not exhausted in the

example!).

2.2 A worked example

Imagine we have measured brain activity in turtles every minute over a number of days.

Because we are especially interested in the course of the brain activity during dusk we

calculate the mean brain activity during three dusk periods (civil, nautical, and astronomical,

each lasting 30 min) and for each hour relative to dusk (i.e., 12 hours before and after dusk).

We want to plot mean brain activity values with standard errors per hour. We also want to

have background shades showing the dusk periods and night. We want to draw brain activity

on a log scale but have the y-axis labelled with the original values. The plot we aim at looks

like this:

18

Figure: Turtle brain activity during at different times of the day.

Before plotting we have calculated the means and standard errors from the data with a mixed-

effects model, correctly dealing with repeated measurements of individuals, autocorrelation

and so forth. By the way, the data we are using here are fake data, derived from original data

on a different animal with a different parameter measured. The results were saved in the data

frame "ba" for brain activity - for our purpose we can generate it as follows:

ba <- data.frame(

 hrdusk=c("-10h","-9h","-8h","-7h","-6h","-5h","-4h","-3h","-2h","-1h","c","n","a",

 "1h","2h","3h","4h","5h","6h","7h","8h","9h","10h"),

 pred=c(201,196,184,184,180,172,172,175,184,173,176,223,178,156,158,163,164,158,146,146,139,140,138),

 se_u=c(192,187,175,176,172,164,164,167,175,164,168,216,170,149,151,155,156,151,139,139,133,133,132),

 se_l=c(210,204,192,193,189,181,181,183,192,182,185,230,187,164,166,171,173,166,153,153,145,146,144))

))

Note the spacing we have used to align code pieces in a nice way. hrdusk is the hour relative

to dusk, with the twilight periods given as "c", "n", and "a" (for civil, nautical, and

astronomical). pred contains the predicted values, se_u and se_l contain the upper and lower

ends of the standard errors.

We create this graphic entirely "by hand", defining all its elements ourselves. Note that at this

stage we don't have useful values for the x-axis yet - hrdusk does not contain the x-values at

which we want to draw the data, but it informs us of the period (the hour before or after dusk

and the dusk-periods) the data belong to.

2.2.1 Setting up the frame

plot() opens a plotting window with a pre-defined aspect ratio that is unsuitable for our wide

plot. To set up a plotting window with the desired dimensions, we write

windows(8,3)

This opens the plotting window with width and height in the given ratio (according to the help

file the units are in inches, but since the graphic will be a vector graphic it can be scaled to

any size with the given ratio with no loss of quality).

This is one of the few moments where Windows and Mac users have to do something else:

windows() is for Windows, on Mac it is:

quartz(,8,3)

-10h -8h -6h -4h -2h 2h 4h 6h 8h 10hsunset
100

110

120

130

150

180

200

250
b

ra
in

 a
c
ti
v
it
y

19

The comma before the 8 is not a typo. Rather, quartz takes as first argument a title (of the

plotting window), which we don't want to specify here, so we leave it empty. Unfortunately, a

graphics code written on Windows cannot be expected to look exactly the same when you run

it on Mac and vice versa: some proportions and sizes will change and you will have to adjust

the code. The code given here was written on a Mac, so on Windows the result probably looks

a bit odd - may be you want to do the adjustments as an exercise!

We now have our plotting window. Before we use plot() we adjust the white space that is

left around the plot (the margins, i.e. space for the axes labels). The default leaves space on all

four sides. We need only little space on top and on the right, and we set that with

par(mar=c(1.5,4,0.5,0.5)).

The mar-argument in par contains the width of the bottom, left, upper, and right margin. The

unit is "lines", fractions are allowed as seen in the example.

Now we plot the data. plot() usually takes as its first two arguments the x- and y-values (or

the formula notation) as seen above. Thus, it expects two vectors of equal length. In our case

we don't have the numeric values for the x-axis in our data frame (ba$hrdusk is a factor due to

the twilight periods, i.e. it does not give the spacing we want), so we simply type NA as the

first two arguments of plot(). We can do that, because we set the arguments xlim and ylim

in the plot function, i.e. we set our custom axes limits. If we don't do that but provide x- and

y-values, R calculates the limits from the data. We have decided to put "sunset" at the x-value

0, thus our fist tick mark on the x-axis has to be at -10 and the rightmost tick is at x=11.5

(dusk periods are 0.5 hours wide).

plot(NA, NA, xlim=c(-10.5,12), ylim=c(log(100),log(250)), type="n",

 axes=F, xlab="", ylab="", yaxs="i", xaxs="i")

The y-limits we need are between 100 and 250, which we read from the data frame but which

we also could calculate e.g. with min(ba$se_l) etc. We want to draw the values on a log

scale, thus the log (in R, this is the natural logarithm). The type-argument defines the type of

plot, default is "p" for points, alternatives are e.g. "l" for line, "b" for both points and lines,

"h" for histogram-like, "s" for step, and "n" for nothing. In our case the argument could have

been omitted because of the NA's as first arguments.

Because we want to draw our axes by hand, we write axes=F (FALSE) and we want no x- and

y-labels (xlab="", ylab=""), too. Normally, R adds about 4% space on each side to the axes

limits. If we want the axes to precisely cover the range specified by ylim or xlim, we add

yaxs="i" and xaxs="i" (axis style). This is necessary, for instance, when you want the x-axis

to go through y=0. In such a case you may write yaxs="i" and ylim=c(0, max(yvalues)*1.04);

if you don't multiply the maximal y-value by a little more than 1 the largest points will lie on

the upper edge of the plot which looks not nice (thus, we remove the 4 % added by R only at

the lower end of the axis).

This plot-command does not draw anything - not even a box around the plotting area! But

everything is set up to start to draw things we can see! If at this stage you want to check

whether you are satisfied with the general layout, you can write box(), which draws a box

around the plotting region. It is not really needed, because as the next steps we draw the axes

and quickly see whether we have enough margin space.

20

2.2.2 Customizing axes

We use the function axis() to draw the axis. After drawing it with the arguments we just

explain, we saw that the labelling was a bit too large. Many plotting functions have the

argument cex, which means character extension. axis() does not. In such a case, or if we

want to change the character extension for all following commands, we can change the

"global" default cex-value of 1:

par(cex=0.9)

For the x-axis, we write:

axis(1,c(-10:0,0.5,1,1.5:11.5), labels=NA, tck=-0.02)

The first argument, which we set at 1, defines which axis we want to draw; 1=below, 2=left,

3=top, 4=right. Then we have to tell R where we want to have axis ticks and potentially

labels. We want to have the numbers from -10 to 0, abbreviated by -10:0, then 0.5 and 1

where the dusk periods change, and then the values 1.5, 2.5 ... 11.5. The next argument takes

the labels we want to show at the tick marks. It has to be of equal length as the previous

argument, or NA. We choose NA because we don't want to see labels at the ticks. tck=-0.02

reduces the length of the tick marks a bit (see ?par for what the value means, and try different

values; with tck=F, no ticks are drawn). We now have our x-axis with the tick marks where

we want them, and we can add the labels with a second axis-command:

axis(1,c(seq(-9.5,-1.5,by=2),seq(3,11,by=2)),

 labels=paste(seq(-10,10,by=2)[-6],"h",sep=""),tick=F,line=-0.8)

Again the first argument is 1, i.e. the x-axis. Then we provide the x-values where we want to

have our labels (they are centred at this values). We only want to have every second hour

labelled, so we need a sequence of the values from -9.5 (the middle between -10 and -9) with

steps of 2. seq(-9.5,-1.5,by=2) does that up to the value -1.5. We omit the 0, we add

"sunset" afterwards (we could also do it here, actually), but we need the x-values from 3 to 11

with step=2. Now the labels - have a look at the plot: We want a sequence from -10 to 10,

step=2, but not the 0, and add "h" to these numbers. paste() pastes numbers and/or

characters together. The seq-function produces the sequence from -10 to 10 with step 0,

including the 0. By adding [-6] after the brackets we omit the 6th value of the sequence with

is 0. The numbers are to be pasted to "h". We don't have to repeat the "h" - paste() simply

recycles values if they are unequally long. By default, R places a space between pasted

characters, which we can omit with the argument sep="" (sep=";" would use a semicolon, or

you can place anything you want between the quotation marks). This time we want no ticks,

thus tick=F. And the default position is a bit too low, line=-0.8 suits better (trial and error!).

Finally, we add "sunset" at the right point. Here we use the function text() to illustrate it.

Usually, we use text() to write text at a given position in the plotting region, but we can also

use it outside.

text(0,4.57,"sunset",adj=c(0.5,1), xpd=NA)

0 is the x-value. 4.57 is the value on the y-axis (remember, it starts at log(100)=4.605), found

by trial and error. Then we provide the text, i.e. "sunset". the adj-argument (adjust) defines

where the text should appear relative to the x-y-coordinates we have provided and it needs a

two-number vector (i.e. two numbers combined with c()). The first number shifts the text

from 0="to the right of the xy-coordinate" to 1="to the left of the xy-coordinate"; 0.5 centers

the text. The second value shifts the text from 0="above the xy-coordinate" to 1="below the

21

xy-coordinate". Values outside [0;1] are usually allowed, too. Usually, text (as well as e.g.

lines, rectangles etc) are clipped where they leave the plotting area. Since our text is outside

the plotting area, it would be clipped, i.e. not appear at all. xpd=NA overrides this setting,

allowing plotting all the way to the end of the plotting window.

Now the y-axis:

t.y <- c(100,110,120,130,150,180,200,250)

axis(2,log(t.y),labels=t.y,las=1)

We save the y-values at which we want to have labels in t.y. Then we plot the y-axis, thus

with the first argument=2, the ticks are to be at the log-values of t.y but the labels are t.y

themselves. By default labels are written in the direction of the axis. Because we want the y-

labels to be horizontal, too, we set the argument las=1.

We don't need a axis title for the x-axis since it is self-explanatory. We want, though, a y-axis

title. We could use text() again, with the argument srt=90 (string rotation 90°), but there's an

easier way with the margin text function:

mtext("brain activity", 2, line=2.7)

Write "brain activity" in the second margin (i.e. the left margin). line=2.7 defines the distance

to the y-axis. You could use the ylab argument in the plot-command above, but if you are not

happy with the distance of the axis title to the axis line, using mtext is one option.

2.2.3 Colors and background elements

We want four background colours indicating the dusk periods and night in increasingly dark

blues (if you have a b/w-copy of this script, you only see greys, of course). We want to save

the four colours in t.col. We could search all colours available as characters (type colours()

in the console! colors or colours can be used). On the web you find tables with all these. You

can also use rgb() and other colour-functions (see ?rgb and other help files indicated in the

section "See also"), allowing transparency, too (possibly device dependent).

Here we used a nice function that allows you to define your own gradual colours:

t.col <- colorRampPalette(c("lightblue","blue"))(4)

colorRampPalette() with one argument of a vector of two or more colours produces a

function, and this function has one argument only, namely how many colours should be found

that span between the colours indicated. The (4) thus makes that 4 colours are required, and

we want them to gradually change from "lightblue" to "blue".

The function gray() produces gray scales. For a b/w-version, we could use

t.col <- gray(c(0.9,0.8,0.7,0.6))

The background colours in the plot are, in fact, rectangles:

rect(c(0,0.5,1,1.5),log(100),c(0.5,1,1.5,12.5),log(250), border=NA,

 col=t.col)

The function rect() first needs four arguments providing the x-value of the left edge of the

rectangle, then the y-value of the bottom, then the x-value of the right edge, then the y-value

22

of the upper edge. Since we want to draw four rectangles, we provide four values for each

side, unless it is always the same value (no need to provide the log(100) four times, it is

recycled as many times as needed). We could also use a smaller/larger y-value for the

bottom/top of the rectangle because it is clipped to the plotting region (unless we add

xpd=NA, as we did above with the text "sunset" in the margin). We don't want borders

(default is border="black"). col gets the colours for the rectangles, we have prepared these

above.

To draw more complicated background shapes you could use the function polygon().

Finally we send box() to the console to draw a box around the plotting area, which also

closes the gaps between the axes (actually, there are now two lines where the axes are).

2.2.4 The actual data

Everything is fine and ready: we can plot our data. We first draw the error bar lines and then

the points on top of it. Note that we have prepared the graphic with the background shades

first so that our actual data points now lie above these background shades. The order you plot

elements in a graphic is the order you see these elements, staked on top of each other, so to

say.

t.x <- c(seq(-9.5,-0.5),0.25,0.75,1.25,2,seq(3,11))

segments(t.x, log(ba$se_l), t.x, log(ba$se_u))

points(t.x, log(ba$pred), pch=21, bg="white")

We store the x-values at which we want to have our data in t.x, using the same functions we

did before when plotting the x-axis. The error lines are best drawn using segments() that

takes the four arguments x-value, y-value of starting coordinate, x-value, y-value of end

coordinate. Further arguments could be used to change line width (lwd), line type (lty), colour

(col), and possibly xpd=NA if you want to draw outside the plotting area (the xpd-argument is

not explained in ?segments - in such a case, always look for info in ?par). To draw a

continuous line between a number of points, use lines().

Finally, we plot points at the right xy-coordinates. pch is point character - you see the first 25

when you type

plot(0:25,0:25, pch=0:25)

Types 21 to 25 are symbols who's fill colour can be specified with the argument bg

(background colour).

Of course it takes some time to get a routine drawing custom plots in R. Once you have the

code you can adjust it easily, you can draw almost everything you want, and you can also

automatically draw individual plots in a loop (e.g., for a number of species) and save each

plot into a file. How to save a plot is explained next.

2.3 Exporting graphics

You can left-click on the graphics window and using the drop-down menu, copy the graphic

to the clipboard or save it to a file; try copy-paste, too (possibly device dependent). There are

more "save" options in the menu bar at the top. Possibly you don't find the format you need

(e.g. on Mac there's only the pdf-option), or you want to automatically save graphics

23

generated in a loop. For this, rather than windows() or quartz(), you use one of the

following graphics devices: pdf(), postscript(), tiff(), jpeg(),etc . Use ?Devices to

find out more. Independent of the device used, you need to specify the file path and the name

of the file in which you want to save your graphic. In order to signal R that you are finished

with the graphic and that it should safe it, you write dev.off(), which means device off. The

general pattern, thus, is (for a pdf-example):

pdf(“filepath/filename.pdf”, further arguments if desired)

all the code needed to create the plot
dev.off() # no argument needed

 If you develop your graphics using windows() or quartz(),you see step by step what you draw

(and you will be able to adjust details until you are satisfied). Once you are happy with the

graph, you can pack it into such a device - code - dev.off - frame.

However, using the functions pdf() or postscript() saves your graphic directly to a file (which

can also be viewed directly, e.g., with GSview, see

http://www.ghostscript.com/GSview.html). These functions also allow you to specify the

height and width of the graphic. For LaTeX users (and all others who like it), this is the

preferable option because you will bind the graphic file directly into your output file, and by

changing the graphic file, the final output (e.g., your manuscript) updates the Figures

automatically after running latex.

2.4 Some more options

2.4.1 More custom plots and log-axes

We have seen boxplot() and hist() above. If you want to customize a histogram and you

are not served well enough with the available arguments in hist(), you can draw rectangles

"by hand" on a blank plot similar to the way we did above. You can write

data <- rnorm(1000) # creates 1000 normally-distributed random numbers

t.h <- hist(data, plot=F)

to get valuable information saved in t.h, e.g. break points; have a look at t.h or str(t.h).

plot(t.h$mids, t.h$density, type="n", xlim=range(t.h$breaks), las=1,

 xlab="", ylab="density") # prepares the drawing region

n.b <- length(t.h$breaks) # the number of breaks there are

rect(t.h$breaks[1:(n.b-1)],rep(0,(n.b-1)),t.h$breaks[2:n.b],t.h$density,

 col=1:n.b)

What a colourful graph! Let's add lines that enclose 95% of the values symmetrically between

them, i.e. since we have a normal distribution with mean=0 and standard deviation=1 this is at

x=-1.96 and x=1.96. We want a dotted line type (lty=3), with line width 2 (lwd=2), and in

gray:

abline(v=c(-1.96,1.96), lty=3, col="gray", lwd=2)

If you don't want the histogram to hover above the x-axis, you need to specify yaxs="i" and

the ylim-argument so that the largest bar does not touch the top border of the graphics box,

e.g. ylim=c(0,max(t.h$density)*1.04). Or, adjust the graphics box using par(bty="L")

for box type = L-shaped (left and bottom, only), a command that you have to execute before

the plot command. In the plot command, you still need yaxs="i", but not the ylim-argument.

24

Other custom plots we regularly use are pairs(), which draws a pairs-plot, i.e. one plot for

each pair of the variables provided. The variables are given as the first argument either as

matrix or data frame. This is a helpful plot to inspect correlations among variables at the start

of a modelling process.

dat <- read.table("http://www.oikostat.ch/data/parusater.txt", header=TRUE)

head(dat) # look at the data head

pairs(dat[,c("age","sex","P8","wing")])

From this we see the strong correlation between P8 (the 8. primary feather of the bird wing)

and wing. Males (sex=1) have longer wings than females (sex=2), non-determined birds

(sex=0) are inbetween (best seen in the 2. panel in the bottom line). Age and sex have many

data points falling on top of each other. Try:

plot(jitter(dat$age),jitter(dat$sex))

jitter jitters the data points a little bit so that they are not overlaying any more. Type

?jitter to see what control options you have and what exactly jitter does.

acf() plots an autocorrelation plot. To inspect whether your residuals of the model are

autocorrelated, you can use acf(resid(model), type="partial") ("model" is the model-

object of interest; the data need to be in chronological order!); with type="partial" partial

autocorrelations are drawn.

In the worked example above we created a log-axis ourselves. A more automatic alternative is

to use plot(x.values, y.values, log="x") for a log-x-axis, or log="y" for a log-y-axis,

or log="xy" for a log-log-plot.

2.4.2 Getting values from the graphic

If you want to place text or something else at a specific point on the plot you can do that by

trial and error. A helpful function is locator(). This sent to or typed in the console, you can

change to the plotting window and left-click in the plot as many times as you want. Then you

right-click to finish and the xy-coordinates of the point or points are written in the console.

locator(1) will stop locating after 1 click.

plot(1:10, 1:10, pch=16)

t.l <- locator(4) # click four times into the plot, and the four

 # coordinates are saved in t.l

t.l

If you have a scatterplot and you want to know the identity of a specific point (e.g. an outlier),

you can use the function identify(); you have to give the x- and y-axis coordinates as the

first two arguments, i.e. often the same values you provide to the plot-function. See

?identify for details.

dat <- data.frame(x= c(1:10,2), y=c(1:10,9))

plot(datx, daty, pch=16)

identify(c(1:10,2), c(1:10,9)) # click on the outlier to find out its

 # row-number in the dataframe

25

If for some reason you need to know the actual values of whatever parameter set by par, e.g.

the margin sizes in your plot, you can type par("mar"). See ?par for all the settings that can

be set or asked. par("mar")[2], of course, returns the margin width of the second = left

margin only.

2.4.3 Overlaying graphs; figure within a figure

Sometimes one wants to have two plots overlaying one another. For this:

dat <- read.table("http://www.oikostat.ch/data/parusater.txt", header=TRUE)

par(mar=c(4,4.5,0.5,4.5)) # margin size on the bottom-left-top-right;

 # we do it here especially to get more space on the right

 # side; par("mar") shows you the current values.

plot(dat$wing,dat$P8,las=1,pch=16,xlab="wing",ylab="P8 (black)")

par(new=T)

For the second plot we usually have the argument axes=F, and then, possibly, axis(4, ..)

to draw an axis on the right side pertaining to the info provided in the second plot:

plot(dat$wing,dat$Gew,axes=F, xlab="",ylab="",pch=10, col="orange")

axis(4, las=1)

mtext("weight (orange)", 4, line=3)

Sometimes one wants to draw a second figure inside an existing figure (e.g. an inlet figure).

Using dat from just above, we want a scatterplot P8 agains wing, and within the figure a

smaller histogram of wing:

plot(dat$wing,dat$P8,las=1,pch=16,xlab="wing",ylab="P8")

par(fig=c(0.6,1,0.1,0.55), new=T)

hist(dat$wing, main="", xlab="", ylab="", las=1, cex.axis=0.8, col="gray")

The fig-argument in par() defines what area of the figure region should be used for plotting;

the arguments are left, right, lower edge, upper edge, and the unit is "portion of the figure

region" (reasonable values, thus, are between 0 and 1). In our example, the inlet figure is

placed close to the bottom right of the first plot. Possibly, you also want to set mar=c(0,0,0,0)

in the par-function if your inlet figure needs no axes.

You can also set two plots next to one another:

par(fig=c(0,0.5,0,1)) # use the left half of the figure region only

plot first plot

par(fig=c(0.5,1,0.1), new=T) # use the right half of the figure region

plot second plot

Of course, any other layout, possibly with more figures, can be used. If you want to plot

several plots of equal size, however, it is probably easier to use the mfrow-argument

explained next.

2.4.4 More than one graph

If more than one plot needs to be plotted in one plotting window, e.g. 4 plots, use:

par(mfrow=c(2,2))

plot(1,1,pch="A")

26

plot(1,1,pch="B")

plot(1,1,pch="C")

plot(1,1,pch="D")

In order to have all four next to one another:

windows(8,3) # for Mac: quartz(,8,3) - try also without this line!

par(mfrow=c(1,4))

plot(1,1,pch="A")

plot(1,1,pch="B")

plot(1,1,pch="C")

plot(1,1,pch="D")

Thus, the first of the two values required by mfrow is the number of rows of plots, the second

is the number of columns of plots. Sequential plots are filled in row-wise; mfcol=c(2,2) fills

them in column-wise.

If you need legends only on the leftmost and/or bottom plots, because it is the same for all

plots in a row/column, you may want to reduce the white space between the plots but have

enough space to the right and at the bottom of the group of plots:
par(mfrow=c(2,2),mar=c(1,1,1,1), oma=c(4,4,0,0))

mar is the margin around each plot (use mar=c(0,0,0,0) for adjacent plots), oma is the outer

margin around the set of plots (again bottom-left-upper-right; default is c(0,0,0,0)).

You could continue as follows:

par(las=1) # draw all axis labels horizontal

plot(1:10,1:10,xaxt="n") # no x-axis in the first = upper left plot

plot(1:10,1:10,xaxt="n",yaxt="n")

 # neither x- nor y-axis in the second = upper right plot

plot(1:10,1:10) # both axes in the bottom left plot

plot(1:10,1:10,yaxt="n") # no y-axis in the bottom right plot

mtext("x-axis", 1, outer=T, line=2) # x-axis title in the outer margin

par(las=0) # otherwise the following axis title is horizontal

mtext("y-axis", 2, outer=T, line=2) # y-axis title in the outer margin

The result:

27

Figure: One graphic composed of four panels.

2.4.5 Symbols and fonts and pixel images

Male (mars) and female (venus) symbols are sometimes needed in our plots:

text(x,y, "\\MA", vfont=c("sans serif", "bold"))

text(x,y, "\\VE", vfont=c("sans serif", "bold"))

x and y are the coordinates where the symbol should appear. Possibly you have to make a

single back slash, i.e.: "\MA" and "\VE" (device dependent).

More symbols can be explored as follows:
plot(1:20,1:20,type="n")

i <- 1

for(x in 1:20) for(y in 1:20) { points(x,y,pch=i); i <- i+1 }

You'll get more or less symbols (and correspondingly less or more warnings) depending on

your device - not all allow for the same number of point characters, apparently.

The font-topic is a difficult one. It is simple to get bold, italic or bold-italic text:
par(font=2) # 1=plain, 2=bold, 3=italic, 4=bold italic

Further options are the arguments vfont in text() and family in par(), but we are not expert

in this, and it seems to be device dependent, too. Despite good advice from the web we

sometimes don't manage to get the desired font. Let's hope that not too many journals start to

require specific fonts for graphics... Of course, if you have Illustrator (or a similar program)

you can produce e.g. a postscript file (see above) and change fonts in Illustrator.

It is also possible to place a pixel image in your graph, e.g. as a background picture. We don't

use that often, so we don't have much experience, especially regarding file size. Murrell

(2006) Murrell (2006) suggests using the package pixmap and then the function addlogo(),

and to work with bitmap images.

2

4

6

8

10

1:10

1
:1

0

1:10

1
:1

0

2 4 6 8 10

2

4

6

8

10

1:10

1
:1

0

2 4 6 8 10

1:10

1
:1

0

x-axis

y
-a

x
is

28

2.5 Specific graphics packages

There are two major graphics packages that we want to mention here: The package lattice

brings the proven design of Trellis graphics (developed for S by William S. Cleveland and

colleagues at Bell Labs) to R. With lattice, it is very easy to draw nice graphs with a few lines

of code. Basically, you can customize them too, but this is a bit harder than with the basic plot

function. There is a whole book about lattice graphics (Sarkar, 2008). We just make one

simple example, the result of which is shown below:

library(lattice)

library(ISwR)

data(bp.obese)

bp.obese$SEX <- factor(bp.obese$sex, labels = c("male", "female"))

xyplot(obese ~ bp | SEX, data = bp.obese, ylab = "Obesity index", xlab =

"Systolic blood pressure (mm Hg)")

The package ggplot2 is newer than lattice and works quite differently. It is based on the

insights from Leland Wilkinson’s Grammar of Graphics and written by Hadley Wickham.

Using ggplot2, it is easier to superpose multiple layers of a graph (points, lines, maps, etc.).

Read Wickham (2009) to learn more (http://had.co.nz/ggplot2).

A further recommendable book on graphics is Murrell (2006) Murrell (2006).

Figure: Scatterplot of obesity index vs. systolic blood pressure for men and women.

2.6 Literature

Murrell, P. (2006). R Graphics. Boca Raton, Chapman&Hall/CRC.

Sarkar, D. (2008) Lattice - Multivariate data visualization with R. Springer.

Wickham, H. (2009). ggplot2. Heidelberg, Springer.

Systolic blood pressure (mm Hg)

O
b

e
s
it
y
 i
n

d
e

x

1.0

1.5

2.0

100 120 140 160 180 200

male

100 120 140 160 180 200

female

29

3 Probability distributions

Before diving into statistical analyses and tests, we want to focus on probability distributions.

Daalgard (2008, p. 55) says: “the view of data as something coming from a statistical

distribution is vital to understanding statistical methods”. On the one hand, we can hardly ever

study the whole “population” (group of organisms or other entities) of interest. Instead, we

investigate a sample. To draw valid conclusions from the sample about the population of

interest, it is necessary to make reasonable assumptions about the type of probability

distribution that best describes our data.

In this chapter, we will focus on the three probability distributions we find most important for

analyzing ecological / biological data: the normal distribution, the Poisson distribution and the

binomial distribution. R has convenient functions to simulate data from and handle many

different theoretical distributions. Without going into much theoretical detail, we will play

with these functions.

3.1 The binomial distribution

The binomial distribution describes repetitions of a binary experiment with „success“ or

„failure“ as outcomes (1 or 0). Examples you may well know from probability theory are

flipping a coin or throwing dice. For example, you may flip a coin 10 times and count the

number of heads (successes). The number of repetitions, n (here n=10), and the probability of

success, p (here p=0.5), sufficiently describe the binomial distribution, abbreviated as B(n,p).

We can write X ~B(n,p) to describe a binomially distributed random variable X.

In our example, we have B(n=10, p=0.5). If you know the parameters n and p, the Binomial

distribution function, f(x) = P(X=x) describes the point probabilities of the outcome x (for

example, 3 heads out of 10):

The cumulative distribution function, f(x) = P(X≤x), describes the probability of a range of

outcomes, for example, less than 4 heads out of 10.

Biological examples, which may be well described by the binomial distribution are:

 the number of young birds from a clutch, which are still alive two weeks after

hatching (e.g., 2 out of 4, 3 out of 4…)

 the number of seedlings germinated after 1 week from a petri dish with 100 seeds

(e.g., 52, 94, 31...).

A special case of the binomial distribution, when n=1, is the Bernoulli distribution. So

Bern(p) is equivalent to B(1,p). In a Bernoulli trial, the outcome is simple “success” or

“failure” (0 or 1), without summing up successes. Binary data like presence vs. absence or

dead vs. alive may be described by a Bernoulli distribution (or B(1,p)).

Now, let’s go to R: we now simulate data from a Bernoulli distribution using the function

rbinom() for the example of flipping a coin 10 times. These are 10 independent Bernoulli

trials, the outcome will follow B(1,p) or Bern(p)

X1 <- rbinom(n = 10, size = 1, prob = 0.5) # one possible outcome

X1 # look at X1

Note that the argument size = 1 witin rbinom() is actually the Binomial parameter n in B(n,p),

whereas the argument n = 10 in rbinom() is the length of our outcome vector. The function

)!(!

!

)1()(

xnx

n

x

n

pp
x

n
xXP xnx

30

rbinom uses the name “n” for the number of random values simulated (sample size). Thus, X1

is Bernoulli distributed with p=0.5. Next, we let everyone in this class flip a coin 10 times and

count the number of heads. So we repeat the above experiment several times, each time

summing up the heads.

n.class <- 15 # adapt this for your class

X2 <- rbinom(n = n.class, size = 10, prob = 0.5); X2

creates and prints X2

Now the size of our trial is 10, as we simulate data from B(10,p), and n in rbinom() is now the

number of people in class.

We can get point probabilities from the Binomial distribution for specific outcomes using the

function dbinom(). For example: the probability of getting exactly 7 heads when flipping a

coin ten times is:

dbinom(x = 7, size = 10, prob = 0.5)

Alternatively, you could do this calculation “by hand”, using the distribution function for the

binomial distribution given above. The function choose(n, x) gives the number of possibilities

for choosing x out of n:

choose(10,7)*0.5^7*0.5^3 # gives the same result as above

The probability of getting more than 7 heads (8, 9, or 10 heads) when flipping a coin ten times

is:

pbinom(q = 7, size = 10, prob = 0.5, lower.tail = F)

lower.tail = F: P(X > 7)

Conversely, the probability of getting <= 7 heads (up to 7 heads) when flipping a coin ten

times is:

pbinom(q = 7, size = 10, prob = 0.5, lower.tail = T)

lower.tail = T: P(X <= 7)

This is exactly 1-P(X > 7) as calculated before.

There is a fourth function, the quantile function qbinom() that can be used for the binomial

distribution. We will apply the quantile function for the normal distribution later. In fact, these

four functions are available for all distributions implemented in R.

A good way to graphically inspect the distribution of values in a sample is to draw a

histogram:

hist(X2)

create a large binomial sample

X3 <- rbinom(n =1000, size = 10, prob = 1/6)

par(mfrow = c(1,2))

hist(X3, breaks=seq(0,10), right=FALSE)

We add a graph of the theoretical point probabilities (see Figure below).

plot(x = seq(0,10), y = dbinom(x = seq(0,10),size = 10, prob = 1/6),

main="Point probabilities of B(10,1/6) ", xlab = "x", ylab = "P(X=x)")

31

Figure: Histogram of a binomial sample of size 1000 (left) and point probabilities of the underlying distribution

B(n=10, p=1/6) (right).

Note that while the histogram does show the general shape of the Binomial distribution

B(10,1/6), it does not emphasize the fact that the distribution is discrete, i.e., there are no

values between 0 and 1 or between 1 and 2 (etc.), the values are exactly 0, 1, 2 etc. The

function hist() is great due to its general use, but in the Binomial case a more precise version

would be:

plot(table(X3), xlim=c(0,10), ylab="Frequency"); axis(1, 0:10)

3.2 The Poisson distribution

The Poisson distribution can be used to describe countable phenomena that happen with

constant probability in time or space. The Poisson distribution is thus used to describe count

data related to a certain time period (e.g., 1 hour), or a given area (e.g., 1m2). Unlike the

binomial distribution, the maximum count is not strictly limited or it is unkown, so we cannot

calculate proportions. The Poisson distribution is defined by a single parameter which is at

the same time the mean and the variance of the distribution:

Biological data that may be described using a Poisson distribution are:

 the number of seedlings emerged per m2

 the number of birds travelling across an alpine pass per day

 the number of mutations in a given stretch of DNA after a certain amount of radiation

Assume that we know from the literature that the average clutch size for Blue tits (Parus

caeruleus) is 5. Let's simulate the clutch size of 20 pairs

rpois(lambda = 5, n = 20)

Now we want to know the probability of a clutch size of exactly 7:

!
)(

x

e
xXP

x

32

dpois(x = 7, lambda = 5)

and the probability of a clutch size larger than 7:

ppois(q = 7, lambda = 5, lower.tail = FALSE)

Note: you can also get the point probabilities and cumulative probabilities for several possible

outcomes:

dpois(x = c(0:15), lambda = 5)

ppois(q = c(0:15), lambda = 5, lower.tail = TRUE)

Let’s graphically inspect the point probabilities of different Poisson distributions:

par(mfrow=c(1,1))

lambda = 1

plot(x = seq(0,20), y = dpois(x = seq(0,20), lambda = 1), pch=16, main =

"Point probabilities of the Poisson distribution", xlab = "x", ylab =

"P(X=x)")

add points for lambda = 0.5, 3, 5 and 10

points(x = seq(0,20), y = dpois(x = seq(0,20), lambda = 0.5), pch=16,

col="red")

points(x = seq(0,20), y = dpois(x = seq(0,20), lambda = 3), pch=16,

col="blue")

points(x = seq(0,20), y = dpois(x = seq(0,20), lambda = 5), pch=16,

col="green")

points(x = seq(0,20), y = dpois(x = seq(0,20), lambda = 10), pch=16,

col="orange")

legend(x=15, y = 0.35, legend=

c("lambda=1","lambda=0.5","lambda=3","lambda=5","lambda=10"), pch=16, col=

c("black","red","blue","green","orange"))

Figure: Point probabilities of Poisson distributions with different .

33

3.3 Discrete and continuous distributions

The Poisson and the Binomial distribution are so called discrete distributions. This means that

the outcome is a discrete number. It can be any integer number for the Poisson (0, 1, 2, 3,...),

an integer between zero and n (upper limit) for the Binomial (0, 1, 2, 3,..,n), or a binary

variable (0,1), as in case of the Bernoulli distribution to describe either of two possible

outcome categories (presence vs. absence or dead vs. alive). For discrete probabilities, the

function f(X) = P(X = x) describes the point probabilities.

The normal distribution, which we look at next, is a continuous distribution. This means that

random values from the normal distribution can lie everywhere on a continuous scale and thus

there is an infinite number of possible values. In practice, every measurement on a continuous

scale has a limited number of digits and is thus discrete on a very small scale. For example, a

measure taken in meters with three digits after the comma (e.g. 2.755 m) is an integer number

when we express it as millimeters (2755 mm). Nevertheless we model such data as continuous

data because that is what they are in nature. The distribution function for continuous

distributions describes densities instead of point probabilities. Densities are a bit hard to

interpret, but it helps to remember that the total area under the density curve is always 1. More

technically, a density is the infinitesimal probability of hitting a small region around x divided

by the size of that region. There are many other continuous distributions apart from the

normal distribution, several of which are important in statistics (t, F,
2
, Uniform, Gamma,

Weibull, etc.)

3.4 The normal distribution

The normal distribution, also known as Gaussian distribution is useful to describe, at least

approximately, any (continuous) variable that tends to cluster around the mean. As an

example, the heights of men in your country cluster around a mean of let’s say 180 cm

(depending on the country), with only few men less than 160 cm or more than 200 cm tall.

Although we would probably measure the height in cm, there is an infinite number of possible

heights (even within a 1 cm interval). The density function of the normal distribution has a

perfectly symmetric, bell-shaped form, defined by the parameters for the mean and for the

standard deviation (

 for the variance). A histogram of a sample of normally distributed

measurements will also have a more or less bell-shaped form, depending on the size of the

sample.

Other biological examples of data that may be described by a normal distribution are:

• the wing span or beak length of birds (in cm or mm)

• weight of seeds (mg)

Note that these are typically measured variables (instead of counted, as for Poisson or

binomially distributed variables), involving some sort of unit (as cm or g, etc.).

The normal distribution can also be used to approximate other distributions. This works well

for example for a binomial distribution B(n,p) with large n and p far enough from zero or one.

The approximation is then N(=np,
2
=np(1-p)). As a rule of thumb, the approximation works

well if np > 5 and n(1-p) > 5. A Poisson distribution with sufficiently large can also be

approximated as N(=l,
2
=l). This approximation is excellent for > 1000, and is probably

ok for > 10.

Let’s go back to the Blue tits example above, for which we simulated the sizes of 20 clutches.

Imagine we know that 18 cm is the average wingspan for female Blue tits, with a standard

34

deviation of 0.5 cm. We simulate the wing spans of 20 female birds using the function

rnorm():

rnorm(mean = 18, sd = 0.5, n = 20)

Note that if mean and sd are not specified, the default is mean = 0 and sd = 1, corresponding

to the standard normal distribution. We now have a closer look at the standard normal

distribution by plotting the density curve:

x <- seq(-4, 4, 0.1) # x-values used in the plot

plot(x, dnorm(x), type = "l", main = expression(paste("Standard normal

distribution (", sigma," = 1, ", mu, " = 0)")))

Note that the area under the density function is exactly 1. Now we want to know the the 97.5

% quantile (value x1 on the x-axis)

x1 <- qnorm(0.975); x1 # x1, where P[X <= x] = 0.975

The probability, that any random number X, drawn from the standard normal distribution is

<= x1 is 0.975. Conversely, X > x2 is 0.975 for x2.

x2 <- qnorm(0.975, lower.tail = FALSE); x2 # x2, where P[X > x] = 0.975

x3 <- qnorm(0.025, lower.tail = TRUE); x3 # alternative way, x3 = x2

The probability of a random number > 3, ≤ 1.96 and ≤1 is:

pnorm(3, lower.tail = FALSE) # probability of a value > 3, P[X > 3]

pnorm(1.96) # P[X ≤ 1.96]

pnorm(1) # P[X ≤ 1]

Specifying lower.tail = FALSE is not necessary, because this is the default.

Let’s graphically inspect the density curves of different Normal distributions (see Figure

below):

x <- seq(-6,6,0.1)

par(mfrow = c(1,2))

plot(x, dnorm(x), type = "l", ylim = c(0,0.8), main =

expression(paste("Normal distribution with different ", sigma)), ylab =

"Probability density")

lines(x, dnorm(x, sd = 2),col="red")

lines(x, dnorm(x, sd = 0.5),col="violet")

legend(-6,0.8, legend =

c(expression(paste(sigma,"=1")),expression(paste(sigma,"=2")),

expression(paste(sigma,"=0.5"))), col = c("black","red","violet"), lty=1,

bty="n")

plot(x, dnorm(x), type = "l", ylim = c(0,0.8), main =

expression(paste("Normal distribution with different ", mu)), ylab =

"Probability density")

lines(x, dnorm(x, mean = 2), col="red")

lines(x, dnorm(x, mean = -1), col="violet")

legend(-6,0.8, legend =

c(expression(paste(mu,"=0")),expression(paste(mu,"=2")),

expression(paste(mu,"=-1"))), col = c("black","red","violet"), lty=1,

bty="n")

35

Figure: Left: normal distributions with equal mean (= 0) but different standard deviations. Right: normal

distributions with equal standard deviation (= 1) but different m.

The black curve is the standard normal distribution (with =0 and =1).

3.4.1 The central limit theorem

In its classical form, the central limit theorem states that if x1, x2,..., xn is a random sample

from a population (more technically, the sample should be iid, independent and identically

distributed) with mean and standard deviation and ̅ is the sample average, then the

distribution of ̅is approximately normal with mean and standard deviation
2
n.

Let’s try this for the average of a sample from a binomial distribution (example adapted from

Crawley 2002, p. 127):

Histogram of 1000 random numbers from a binomial distribution with size =

12 and p = 0.2

par(mfrow=c(1,2))

y <- rbinom(n = 1000, size = 12, p = 0.05)

table(y)

hist(y, breaks = c(0:(max(y)+1)), right = FALSE)

Histogram of 1000 means of 30 random numbers each from a binomial

distribution with size = 12 and p = 0.2

my <- numeric(1000)

for (i in 1:1000){

 y <-rbinom(n = 1000, size = 12, p = 0.05)

 my[i] <- mean(y)}

hist(my)

look at the means

mean(y)

mean(my)

look at the variances

theoretical variance of a binomial distribution

36

var.binom <- 0.05 * (1-0.05) * 12 # sqrt(p * (1-p) * n)

compare with sample variance of y

var.binom; var(y)

theoretical variance of sample averages (sample size 30)

sd.mean.30 <- var.binom / 30

compare with sample standard deviation of my

sd.mean.30; sd(my)

A more relaxed formulation says that the sum z of many small independent random variables,

zi, will be a random variable with an approximate normal distribution z ~ N(z,
2

z), with z

and
2

z being the sums of the means zi and variances
2

zi of the zi‘s. This works in practice, if

the individual
2

zi are small compared to the total variance
2

z. For more details, see for

example Gelman and Hill (2007) or Crawley (2002). Here, we focus on the practical

implications:

 The distribution of the sample mean of any sample of random variables (also if these

are themselves not normally distributed), tends to have a normal distribution. The

larger the sample size, the better works this approximation.

 The approximation of the binomial distribution by the normal distribution (see above):

since if n is large, the random variable is the sum of many independent random

variables (Bernoulli trials).

 Any variable that is the result of a combination of a large number of small effects (like

phenotypic characteristics that are determined by many genes) tends to show a bell-

shaped density estimate. This justifies the common use of the normal distribution to

describe such data.

 For the same reason, the normal distribution can be used to describe error variation

(residual variance) in linear models (where this normality of errors is an underlying

assumption). In practice, the error is often a result of many unobserved variables.

3.5 Note on the generation of random numbers

Try the following in R and compare the results with the results from your neighbor:

rnorm(3, mean=10, sd=4) # draw 3 random numbers from Normal(10, 4)

You almost certainly got different values. To make a draw of random numbers reproducible,

we need to set starting values (random seed) for the random number generator. Now try:

set.seed(3634)

rnorm(3, mean=10, sd=4)

Now you should get the same numbers. Note: the random numbers generated in R (and other

software) are actually pseudo-random, generated by certain algorithms. Otherwise they could

not be reproduced. Setting a seed is very handy whenever you simulate data and want to be

able to reproduce them.

3.6 Literature

Dalgaard, P. (2008). Introductory statics with R. New York, Springer.

Gelman A. & Hill J. (2007) Data analysis using regression and multilevel/hierarchical models.

Cambridge University Press.

Crawley, M. (2002) Statistical computing – An introduction to data analysis using S-Plus.

Wiley.

37

4 Summary statistics

Summary statistics help us summarize a set of observations (data), in order to communicate as

much information as possible in a few numbers. A statistic is a sample property, i.e., it can be

calculated from the observations in the sample. In contrast, a parameter is a property of the

population from which the sample was taken. As it is usually unknown (unless we simulate

data from a known distribution), we use statistics to estimate parameters.

Statistics inform us about the distribution of observed values in the sample. Lots of statistics

can easily be calculated in R. Here is an overview of some statistics, given a sample {x1, x2,

x3, …, xn}, ordered with x1 being the smallest, xn being the largest value (ordering is only

important for the median):

Statistic R-function Formula Parameter

arithmetic
mean

mean()
 ̅

∑

population

mean ()

median median() ⁄

(⁄ ⁄)

population
median

sample
variance

var()

∑ ̅

population
variance

()

sample
standard
deviation

sd() √ population
standard
deviation

()

4.1 Measures of Location

The most important measure of location (or central tendency) is the arithmetic mean (or

average). It is very useful to describe the “center” of symmetric distributions (such as the

normal distribution). Its disadvantage is, that it is sensitive to extreme values. The median is

an alternative measure of location that is much less sensitive to extreme values. It is the

central value of the ordered sample (the formula given in the table only applies if the sample

is ordered). If n is even, it is the arithmetic mean of the two most central values.

Let’s simulate some data in R and calculate both the mean and the median:

x <- rnorm(20, mean = 5, sd = 4) # x: sample data, n=20

x2 <- c(x, 45) # add an extreme value of 45 to x

mean(x); mean(x2)

You see that the arithmetic mean of x is something close to 5, the true mean of the normal

distribution we have sampled 20 values from. The mean of x2, the sample x including an

extreme value is considerably increased. The median, however, is changed only little by the

extreme value.

median(x)

median(x2)

z <- c(1,4,7,9,10) # small sample with uneven n

median(z)

z2 <- c(1,4,7,9) # small sample with even n

median(z2)

38

For a perfectly symmetric distribution, the median equals the mean.

4.2 Measures of dispersion

Measures of dispersion measure the spread / variability of the data.

The variance of a sample is the sum of the squared deviations from the sample mean over all

observations in the sample, divided by (n-1). The variance is hard to interpret, as it is usually

quite a large number. The standard deviation, which is the square root of the variance, is

easier. It is approximately the average deviation of an observation from the sample mean (it

would be exactly the average deviation from the sample mean, if we would use n instead of n-

1 in the denominator of the formula for the standard deviation). Try for the sample x created

above:

var(x) # sample variance

sd(x) # sample standard deviation

sqrt(var(x)) # dito

4.3 Quantiles and the boxplot

The p-quantile is the value x with the property that there is probability p of getting a value

less than or equal to it, i.e. p(X ≤ x) = p. The median is the 50 % quantile. The 25 % quantile

and the 75 % quantile are also called the lower and the upper quartile (quartile because

together with the median, they divide the distribution into quarters). The difference between

the 25 % and the 75 % quartile is called the inter-quartile range. This range includes 50 % of

the distribution and is also used as a measure of dispersion.

We have already seen how to calculate quartiles for the binomial, the Poisson and the normal

distribution (functions qbinom(), qpois(), qnorm()). The 25 %, 50 % and the 75 % quantile of

the standard normal distribution can be calculated as follows:

q25 <- qnorm(0.25); q25

q50 <- qnorm(0.5); q50

q75 <- qnorm(0.75); q75

The boxplot is a way to graphically display a distribution, using the median, the quartiles and

the inter-quartile range. Let’s load the dataset tlc from the library ISwR and create a boxplot

of the body sizes of women and men.

library(ISwR)

data(tlc); ?tlc

par(mfrow=c(1,1))

boxplot(height ~ sex, data = tlc, names=c("Women","Men"), ylab = "Body

height (cm)", col = "blue")

In a boxplot, the box (here in blue) includes the interquartile range. The median is shown as a

line within the box. The range defined by the whiskers which extend at the upper and lower

end of the box is less clearly defined (software and user dependent). The default in R (see

?boxplot.stats) is that the whiskers the whiskers extend to the most extreme data point

which is no more than 1.5 times the length of the box away from the box (interquartile-

ranges). Data points beyond this range are shown separately as “outliers” (see Figure below).

39

Figure: Comparison of body height of women and men by box plots.

4.4 The standard error of the mean

If we have a sample of n observations, which all come from a normal distribution with mean

 and standard deviation , then it is known that the arithmetic mean ̅ of the sample is

normally distributed around with standard deviation ̅ √ ⁄ .

In practice, however, we do not know , but estimate it by the sample standard deviation s.

The true standard deviation of the sample mean is also estimated by the “standard error of the

mean” (SEM), which is calculated as √ ⁄ . Here is an example.

x <- rnorm(n = 100, s = 4, mean = 20) # a sample of size n=100

sem <- sd(x) / sqrt(length(x)); sem # calculate SEM

sd.mean <- 4/sqrt(100) # theoretical SD.mean

While s describes the variability of individual observations (average difference from the

sample mean, SEM describes the variability of the sample mean of n random values from a

sample with sample standard deviation s

4.5 Confidence intervals

If (as above) we have a sample of n observations, which all come from a normal distribution

with mean and standard deviation , and we know that the arithmetic mean ̅ of the sample

is normally distributed around with standard deviation ̅ √ ⁄ we can calculate a 95

% confidence interval for as: ̅ √ ⁄ ̅ √ ⁄ , where N0.025

and N0.975 are the 2.5 % quantiles of the standard normal distribution. For the example above

this would be:

x <- rnorm(n = 100, s = 4, mean = 20) # a sample of size n=100

sample.mean <- mean(x)

sd.mean <- 4/sqrt(100) # theoretical SD.mean

ci95.lower <- sample.mean + sd.mean * qnorm(0.025)

ci95.upper <- sample.mean + sd.mean * qnorm(0.975)

40

The 95 % confidence interval specifies a plausible range for . If we would estimate a

confidence interval for the true parameter an infinite number of times, by calculating ̅ from

an infinite number of samples, each of size n, then would lie within the confidence interval

in 95 % of times (e.g., about 50 times out of 1000). The meaning of the 95 % confidence

interval is sometimes mistaken as containing with 95 % probability. This is not the case,

since one specific confidence interval either contains or it does not.

However, in practice we do not know and have to estimate s (and SEM) from the sample.

Using the normal distribution then results in a confidence interval that is too narrow.

Confidence intervals that are estimated from data are therefore based on the t-distribution (see

below) instead of the normal distribution. This is necessary to correct for having estimated

from the sample, especially if the sample size is small.

4.6 Mean and Variance of different distributions

As we have seen in Chapter 3, the Normal distribution N(

) is defined by the mean and the

standard deviation (or the variance, if we take the square of). These two parameters can be

estimated directly from the arithmetic mean and standard deviation of a sample. If we take a

sample large enough (n=10000) from a normal distribution with = 5 and = 4, this estimate

is fairly accurate:

normal <- rnorm(n = 10000, mean = 5, sd = 4) # normal sample of n=10000

mean(normal) # arithmetic mean of the sample

sd(normal) # standard deviation of the sample

The binomial distribution B(n,p) is also defined by two parameters, but not by the mean and

the standard deviation. The mean of a binomial distribution is np, the variance is np(1-p).

Let’s check that, again with a sample of n=10000.

n <- 10000

p <- 1/6

binom <- rbinom(n = n, size = 10, prob = p) # binomial sample

n*p # expected value for the mean of B(n,p)

n * p * (1-p) # expected value for the variance of B(n,p)

mean(binom) # arithmetic mean

var(binom) # sample variance

The Poisson distribution is defined by only one parameter, l, which is the mean and the

variance at the same time.

poisson <- rpois(n = 100000, lambda = 5)

mean(poisson) # expected value: lambda

var(poisson) # expected value: lambda

4.7 Literature

Dalgaard, P. (2008). Introductory statics with R. New York, Springer.

41

5 Classical statistical tests

5.1 Null-hypothesis testing

Classical statistical methods work with null-hypothesis testing which is based on falsification.

From a logical point of view, it is impossible to prove a theory or a derived hypothesis, since

this would require making all observations related to the hypothesis, and we usually work

with samples. Falsificationism thus strives for questioning, for falsification, of hypotheses

instead of proving them.

For a long time, for example, only white swans had been observed in Europe and it was

hypothesized that all swans are white. However, the observation of a single black swan in

Australia was sufficient to disprove this hypothesis. When doing classical statistical tests, we

therefore make a detour. We propose a null-hypothesis (H0) which is typically uninteresting

and try to falsify (reject) it, instead of proving our actual hypothesis. H0 is complemented by

an alternative hypothesis (HA), which is mutually exclusive with regard to H0. As a

consequence, rejecting H0 means support for HA.

For example, we might have measured the metabolic rates of Northern fulmars

(Eissturmvogel, Fulmarus glacialis) and want to know whether males and females differ in

metabolic rate. The corresponding H0 would be that the metabolic rates of males and females

are equal. HA would be that the metabolic rates differ. Note that HA is two-sided in this case,

which means that we do not specify whether males or females have a higher metabolic rate.

To test H0, we estimate the probability that the observed outcome (e.g., the difference

between male and female metabolic rates) or an even more extreme outcome (even larger

difference) could have occurred by chance alone (if H0 were true). This probability is the P-

value. If the P-value is < (see below), we reject H0. We say, the test is significant.

When testing H0, four typical decision situations can arise:

 Truth

H0 is true HA is true

D
e
c

is
io

n

(t
e

s
t

re
s

u
lt

)

accept H0 1- type II error ()

reject H0 type I error () 1-

We are fine if we accept H0 when it is actually true or if we reject H0 when it is actually false.

We can make two types of error: a type I error occurs if we reject H0 although it is true. The

probability of such an error is . A type II error occurs if we accept H0 although HA is true

(failure to reject H0). This error occurs with probability. is also known as the significance

level, and it is usually set to 5 % (or 0.05). 1-is called the confidence level (95 % if is 5

%). 1- is the statistical power, the probability to reject H0 when HA is true (the probability to

detect a true difference).

Let’s assume H0 is wrong for the fulmar example, and there is a true difference between the

metabolic rates of males and females. Whenever we get a p-value < 0.05 as a result from the

statistical test applied (below we will apply a two-sample t test for this example), we conclude

that there is a difference between males and females. However, the power for showing this

difference is never 100 % because we only look at a sample from a larger population (all

fulmars). If we collected a sample of fulmars 1000 times, with a certain sample size n, we

would find a significant test result in (1- *100 % of the repetitions. The power increases

with the sample size n (for a given difference in metabolic rates, standard deviation of

metabolic rates and). In order to guarantee a certain power, a sample size estimation is

42

necessary. Sample size estimations are required for medical studies where a power of 80 or 90

% is usually anticipated (= 0.2 or 0.1). Unfortunately, sample size estimations are rarely

performed for biological studies meaning that the power is usually unknown and often quite

small (is large). This means that you might get a non-significant result despite of a large

difference (effect size). However, “absence of evidence is not evidence of absence” (Altman

& Bland 1995), i.e., a non-significant effect is no proof of H0 (but may be lack of power to

reject it). The take home message here is that statistical significance is only one aspect of an

analysis.

A much more important aspect is to estimate the size of the effect of interest. In our example,

this would mean to estimate the difference between male and female metabolic rates. We can

estimate the size of this difference together with a confidence interval (see above). While

providing more information than just the significance test alone (size, direction, and plausible

range of the difference), the confidence interval also provides a test of H0. We conclude that

the difference between metabolic rates is significant if the confidence interval does not

contain zero, the difference expected under H0.But, again, if H0 is included in the confidence

interval, this does not mean that we have proven H0.

5.1.1 Test statistics

As already said earlier, the probability that the observed outcome or a more extreme outcome

could have occurred by chance alone (if H0 were true), is the P-value. The P-value is usually

derived via a test-statistic and the distribution of that test statistic. An example of a test

statistic is the t statistic and the t-distribution in the case of t tests. Other test statistics are for

instance 2 (2 test, likelihood-ratio test) or F (F-tests in Analysis of Variance).

5.2 The t test family

There are three types of t tests that we are going to look at, which are used depending on the

kind of comparison we want to make. All of them are based on the assumption that the sample

data come from a normal distribution. This also means that t tests are for continuous data.

Let’s start with the one-sample t test.

5.2.1 One-sample t test

The one-sample t test is used to compare one mean (of a sample) to a reference value (an a

priori chosen value). Here is an example from Daalgard (2008): We have: a sample of

measurements of daily energy intake (in Joules) from 11 women, x1,x2,…,x11. Now we want

to know whether these data conform with the recommended value of 7725 Joules per day.

daily.intake <- c(5260,5470,5640,6180,6390,6515,6805,7515,7515,8230,8770)

Mean <- mean(daily.intake); Mean

The Null hypothesis, H0, is: = 0, the alternative Hypothesis, HA: ≠ 0 . Hereby, is the

true population mean that we estimate by the sample mean ̅. 0 is the reference value (here

the commended energy intake). If the assumption that our sample is normally distributed with

mean and variance
2
,

i.e. x1,x2,…,xn ~ N(,

2
), is reasonable, we can use a one-sample t

test to answer our question. A key concept for this test is the standard error of the mean

 √ ⁄ (s is the sample standard deviation, i.e. the sum of residuals divided by n-1)

that we have met in the previous chapter. The test statistic of the t test is t (what a surprise),

and it is calculated as follows:

43

 ̅

t basically measures how many SEM our sample mean differs from the reference value.

Remember that for normally distributed data, the probability of staying within ±2 is

approximately 95 % (corresponding to 5 % outside this range). Under H0, we would thus

expect 0 to fall within this range. In small samples (say n < 30), however, it is necessary to

correct for the fact that we have estimated SEM from the sample. The distribution of the test

statistic t (t-distribution) therefore has slightly increased probabilities for extreme values, i.e.,

the t-distribution has heavier tails. The shape of the t-distribution depends on the sample size

and approximates the normal distribution for n increasing to infinity (see Figure below). To

get the correct quantiles to define the acceptance region of H0 we take them for the t-

distribution with n-1 degrees of freedom. If our observed t falls outside the acceptance region

for a given significance level, i.e. [t0.025, n-1/t0.975,n-1] for =5 %, we reject H0 and say that the

sample mean differs significantly from 0. Equivalently, we would get a p-value < 0.05 for

this test, which is the probability of observing a t-value as large or larger than the one

observed, given H0 is true. So, if we observe a t-value that is sufficiently unlikely to be

observed if H0 were true, and we have defined what “sufficiently unlikely” means by setting

our significance level, we conclude that H0 must be wrong (reject H0).

Note that for large samples (n ≥ 30), you can use the rule of thumb: t ≥ 2 ≠ 0. Now we

do the calculations just described by hand:

One sample t test by hand

Mu0 <- 7725

> SD <- sd(daily.intake); SD

[1] 1142.123

> N <- length(daily.intake); N

[1] 11

> SEM <-SD/sqrt(N); SEM # standard error of the mean

[1] 344.3631

> Tval <- (Mean-Mu0)/SEM; Tval # to calculate t manually

[1] -2.820754

> pvalue <- 2*pt(Tval, N-1); pvalue

[1] 0.01813724

Doing this test using the t.test() function in R is much quicker:

One-sample t test using t.test()

> t.test(daily.intake, mu = 7725) # 7725: recommended value

 One Sample t-test

data: daily.intake

t = -2.8208, df = 10, p-value = 0.01814

alternative hypothesis: true mean is not equal to 7725

95 percent confidence interval:

 5986.348 7520.925

sample estimates:

mean of x

 6753.636

We get the same result as we got by hand, but with a more coherent output. We get the data

set that was used, the observed t-value, the degrees of freedom and the p-value, the

probability of the observed t-value (or a more extreme one) from the t-distribution for . In

44

addition, R reminds us about our HA and the formulation “not equal” reminds us of the fact

that we have a two-sided HA. R also provides a 95 % confidence interval for which we

could calculate by hand as follows:

 ̅ ̅

This confidence interval does not include the reference value 7725, which means we can

conclude that ≠ 0.

Figure: Comparison of the t-distribution with 1,3, 10 and 50 degrees of freedom with the standard normal

distribution. For df=50, the difference is hardly visible.

5.2.2 The two-sample t test

Instead of comparing one mean to a reference value, we might more often want to compare

two means (two samples). We could also say we want to test the Null-hypothesis that two

samples come from distributions with the same mean. Here is an example from Quinn &

Keough (2002): they have measured the metabolic rates of Northern fulmars (Eissturmvogel,

Fulmarus glacialis) and want to know whether males and females differ in metabolic rate.

The corresponding Null hypothesis, H0, is: M = F or equivalently M - F = 0, and the (two-

sided) alternative hypothesis, HA is,: M ≠ F or: M - F ≠ 0. We assume that both male and

female metabolic rates are normally distributed, i.e., male metabolic rate ~ N(M,M
2
 and

female metabolic rate ~ N(F, F
2
). Another important assumption is that the two samples are

independent. This means that each measurement of metabolic rate was taken on an

independent “unit” (here bird). We will see an example of non-independent samples in the

next subchapter.

The two-sample t test works in a similar way as the one-sample t test. The test statistic t is:

 ̅ ̅

45

SEDM is the standard error of the difference of means. Under the assumption that M and F

are equal, it is calculated as the pooled standard error of the mean (classical t test):

2

)1()1(

11

21

2

22

2

11

21

nn

snsn
s

nn
sSEDM

p

p

The corresponding t will follow a t-distribution with n1+n2-2 degrees of freedom.

However, the assumption of equal variances is not always suitable, and R provides by default

the Welch test, which does not make this assumption. The distribution of the resulting t can be

approximated by a t distribution with degrees of freedom calculated from s1, s2, n1, and n2

(non-integer df). The Welch test is considered the safer one. But as long as the group sizes

and standard deviations do not differ a lot, the two tests will usually give similar results. Now

let’s look at these variants of the two-sample t test in R. First, you need to read the data set

“furness.csv”, for example by setting the working directory to your folder “datasets”:

setwd("..your filepath…/datasets") # set the working directory

furness <- read.csv("furness.csv") # read the data

It is always a good idea to graphically inspect data before carrying out any test. A boxplot by

sex is a good way to do this for the furness data:

plot(METRATE ~ SEX, data = furness)

The graphic suggests that the variances are unequal. We start with the default Welch test:

t.test(METRATE ~ SEX, data = furness) # default: Welch two-sample t test

 Welch Two Sample t-test

data: METRATE by SEX

t = -0.7732, df = 10.468, p-value = 0.4565

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

 -1075.3208 518.8042

sample estimates:

mean in group Female mean in group Male

 1285.517 1563.775

To get the classical two-sample t test we have to explicitly say that the variances are assumed

to be equal:

t.test(METRATE ~ SEX, data = furness, var.equal = T) # classical t test,

assuming equal variances

 Two Sample t-test

data: METRATE by SEX

t = -0.7009, df = 12, p-value = 0.4968

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

 -1143.3057 586.7891

46

sample estimates:

mean in group Female mean in group Male

 1285.517 1563.775

The output of both test variants is similar as seen for the one-sample t test. But the confidence

interval is now for the difference in means. Zero, the difference under H0, is contained in the

95 % confidence interval, suggesting that male and female fulmars do not differ (much) in

metabolic rate. The same is suggested by the p-values > 0.05. The degrees of freedom for the

classical test are nF + nM - 2 = 6 + 8 – 2 = 12.

Note that the specification METRATE ~ SEX corresponds to a model formula (metabolic rate

explained by sex) and is usually very handy to use for data stored in data frames.

Alternatively, we could specify both groups separately, but that is more complicated to write:

alternative specification
t.test(furness$METRATE[furness$SEX == "Female"],

 furness$METRATE[furness$SEX == "Male"], var.equal = T)

We recommend using graphics (as the boxplot below) and your own reasoning to decide

which test you want to use. There is also a formal test for the equality of variances in R,

var.test(), which we try here quickly:

var.test(METRATE ~ SEX, data = furness)

The non-significant test result suggests that variances might be equal (not different).

However, this test suffers the same drawback as any statistical test: For small samples, you

are likely to get a non-significant result (due to a lack of statistical power), in this case leading

you to reject the assumption of equal variances even if the difference is in fact rather large (as

we might conclude from the box plot). For large samples, you are very likely to get a

significant test result and reject the assumption of equal variances (high power). For this

reason we prefer judging the variances graphically.

A demonstration how one could do the two-sample t test ”by hand” is provided in the R-Code

file of this chapter.

Figure: Box-plot of the metabolic rates of female and male Northern fulmars.

47

5.2.3 The t test for paired samples

Paired samples occur if there are two measurements on the same experimental unit. This

means that these two measurements are not independent. For example, you might have

measured daily energy intake in 11 women twice, pre- and postmenstrual. A large

premenstrual value is likely to be paired with a large postmenstrual value (of the same

woman). To assess whether pre- and postmenstrual energy intake differ, we can calculate the

difference between the two for every woman and perform a one-sample t test, comparing the

sample of differences against zero (the reference value under H0 of no difference). An

important assumption for this test is that the differences have a distribution that is independent

from the level (differences between large values should not have a larger variation than those

between small values).

Other examples of paired data are measurements on pairs of plants growing in the same pot or

measurements on pairs of siblings. It is very important to understand the difference between

independent and non-independent data. You will come across them again whenever you have

“hierarchical” or “clustered” data.

Let’s look at the example and graphically inspect the differences between pre- and

postmenstrual measurements. The data are from the library ISwR that accompanies Daalgard

(2008):

library(ISwR)

data(intake)

inspect differences graphically

difference <- intake$post - intake$pre

average <- (intake$post + intake$pre)/2

plot(average, difference)

Figure: Graphical check whether the size of the differences is independent of the level of energy intake.

The sample of just n=11 women is very small. But the graphic indicates that assuming

differences to be independent from the level of energy intake is reasonable. and applying a

paired t test should be save. I It is equivalent to use both samples and specify that they are

paired, or we can just compare the differences to zero by a one-sample t-test:

4500 5000 5500 6000 6500 7000 7500 8000

-1
8
0
0

-1
4
0
0

-1
0
0
0

average (post+pre)/2

d
if
fe

re
n
c
e
 p

o
s
t-

p
re

48

using both samples and say they are paired

> t.test(intake$post, intake$pre , paired = TRUE)

 Paired t-test

data: intake$post and intake$pre

t = -11.9414, df = 10, p-value = 3.059e-07

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

 -1566.838 -1074.072

sample estimates:

mean of the differences

 -1320.455

alternative: use one-sample t test on difference

> t.test(difference, mu = 0)

 One Sample t-test

data: difference

t = -11.9414, df = 10, p-value = 3.059e-07

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

 -1566.838 -1074.072

sample estimates:

mean of x

-1320.455

The output is numerically equal, just the description (data, mean of the differences vs. mean

of x) is a bit different. Note that such a paired design is very “efficient” if it fits the research

question asked (i.e., if you are interested in things that differ within-subject). Through the

pairing of subjects, you can basically get rid of the variance between subjects. Ignoring the

paired nature of the data would in this case decrease the statistical power. (However, ignoring

the paired or clustered nature of data in other settings can lead to the opposite, also known as

pseudo-replication.)

Final remark: If you understand in which situation the paired t test should be used instead of

the two-sample t test, you will find it much easier to understand when you should take into

account hierarchical structure in a more complex dataset. For example, you might have

multiple measurements per individual animal (or plant) and several individuals may have the

same mother (come from the same nest, have the same genotype, etc.). Such data need more

complex hierarchical models (also called mixed-effects models).

5.3 Rank-based alternatives to t tests

All t tests are based on the assumption that our samples come from populations of normally

distributed values. Although t tests are fairly robust against departures from this assumption,

they are not a good choice if this assumption is severely violated; or you might just not want

to make the normality assumption. In this case you can use a non-parametric test (which does

not rely on any parametric distributional assumption). For this sort of test, the data are

replaced by ranks (rank-based tests).

A rank-based analogue for the one-sample t test is the Wilcoxon signed-rank test (also called

one-sample Wilcoxon test). Instead of the two-sample t test you can use the Wilcoxon rank

sum test (two-sample Wilcoxon test, also known as Mann-Whitney test or U-test) and instead

of the t test for paired samples you can use a matched-pairs Wilcoxon test.

49

Just as you can do all t tests using the t.test() function, you can do all these tests using the

wilcox.test() function. Read the description of wilxox.test if you want to know more.

The lack of distributional assumptions can mislead people to use non-parametric tests

inappropriately. You can never get around thinking about your data. For example, if your

observations are not independent, a non-parametric test is not the right solution. Moreover,

although no specific distribution is assumed for the two samples compared by the rank sum

test, the distributions of both groups should be equal (have the same shape).

5.4 Tests for categorical data

5.4.1 Compare a proportion to a reference value: the binomial test

You have put 215 seeds in a petri dish and 39 germinated. Now you want to check whether

this germination rate p = 39/215 conforms to the germination rate given by the trader, p0 =

0.15. The null-hypothesis is: p = p0. You can do this in R by using the function binom.test()

which is based on the probabilities of the binomial distribution B(n,p):

> binom.test(39,215,0.15)

 Exact binomial test

data: 39 and 215

number of successes = 39, number of trials = 215, p-value = 0.2135

alternative hypothesis: true probability of success is not equal to 0.15

95 percent confidence interval:

 0.1322842 0.2395223

sample estimates:

probability of success

 0.1813953

The output includes a confidence interval for the probability to germinate. Since the

confidence interval contains p0, the value under H0, the observed germination rate conforms to

the information given by the trader. Alternatively, you could do this test using the function

prop.test() which makes use of the normal approximation N(np,np(1-p)):

prop.test(39,215,0.15)

 1-sample proportions test with continuity correction

data: 39 out of 215, null probability 0.15

X-squared = 1.425, df = 1, p-value = 0.2326

alternative hypothesis: true p is not equal to 0.15

95 percent confidence interval:

 0.1335937 0.2408799

sample estimates:

 p

0.1813953

The result is similar to binom.test() because n is large (n = 215). By default, Yates continuity

correction is used (see for example Daalgard 2008 for more detail).

5.4.2 Compare two proportions: 2 test

You have sown 108 seeds of plant species A and 117 seeds of plant species B in petri dishes.

After a week, 81 seeds of species A and 36 seeds of species B germinated. Are the

germination rates pA and pB of the two species different? The corresponding H0 is: pA = pB.

50

There are several tests that may be used for this example. We will look at the 2 test first and

do it “by hand” in R. We start by making a matrix of the observed frequencies:

sown <- c(108,117)

germinated <- c(81,36)

notgerminated <- sown-germinated

observed <- matrix(c(notgerminated, germinated), ncol=2,

dimnames=list(c("species A","species B"),c("not

germinated","germinated"))); observed

 not germinated germinated

species A 27 81

species B 81 36

The 2 test compares observed frequencies with the frequencies expected under the

assumption that the germination rate is independent of the species (and vice versa, which in

this example makes little biological sense). Expected frequencies are calculated by

multiplying the marginal totals for each of the four cells of the matrix. For seeds germinated

from species A this would be:

(all seeds of species A * all germinated seeds) / Total number of seeds

(27+81) * (27 + 81) / (27 + 81 + 81 + 36) = 51.84

Calculate the marginal totals

speciesA <- sum(observed["species A",]) # Total of species A

speciesB <- sum(observed["species B",]) # Total of species B

germ <- sum(observed[,"germinated"]) # Total germinated

notgerm <- sum(observed[,"not germinated"]) # Total not germinated

Total <- sum(observed) # Total seeds overall

calculate expected frequencies, assuming independence of species and

germination rate

germA <- speciesA * germ / Total

germB <- speciesB * germ / Total

notgermA <- speciesA * notgerm / Total

notgermB <- speciesB * notgerm / Total

matrix of expected frequencies

expected <- matrix(c(notgermA, notgermB, germA, germB),

dimnames=list(c("species A","species B"),c("not germinated","germinated")),

ncol = 2); expected

 not germinated germinated

species A 51.84 56.16

species B 56.16 60.84

The test statistic is then

 ∑

calculate Chi-square observed

Chi2 <- sum(((observed - expected)^2) / expected); Chi2

[1] 44.01812

p-value

pchisq(Chi2, df = 1, lower.tail = FALSE)

[1] 3.253498e-11

51

The test result indicates strong dependence between plant species and germination rates. Of

course, R has a function that does the calculation much faster. We get the same result as

calculated by hand if we use:

chisq.test(observed, correct=FALSE) # agrees with our own calculation

 Pearson's Chi-squared test

data: observed

X-squared = 44.0181, df = 1, p-value = 3.253e-11

The default in R is correct = TRUE for a 2 test using Yates continuity correction (as in

prop.test() above). This correction makes the 95 % confidence interval a bit wider.

chisq.test(observed)

 Pearson's Chi-squared test with Yates' continuity correction

data: observed

X-squared = 42.2639, df = 1, p-value = 7.975e-11

The function prop.test() is equivalent to chsiq.test() for a 2 x 2 contingency table as in this

example:

> prop.test(germinated,sown, correct = FALSE)

 2-sample test for equality of proportions without continuity

correction

data: germinated out of sown

X-squared = 44.0181, df = 1, p-value = 3.253e-11

alternative hypothesis: two.sided

95 percent confidence interval:

 0.3254180 0.5591974

sample estimates:

 prop 1 prop 2

0.7500000 0.3076923

> prop.test(germinated,sown)

 2-sample test for equality of proportions with continuity

correction

data: germinated out of sown

X-squared = 42.2639, df = 1, p-value = 7.975e-11

alternative hypothesis: two.sided

95 percent confidence interval:

 0.3165148 0.5681005

sample estimates:

 prop 1 prop 2

0.7500000 0.3076923

With small frequencies (one or more frequencies < 5), the test statistic is not nicely 2-

distributed and Fisher’s exact test is recommended. Let’s look at an example with one

frequency < 5:

> sown<-c(12,13)

> germinated <-c(9,4)

52

> notgerminated <- sown-germinated

> observed <- matrix(c(notgerminated, germinated), ncol=2,

dimnames=list(c("species A","species B"),c("not

germinated","germinated"))); observed

 not germinated germinated

species A 3 9

species B 9 4

> chisq.test(observed)

 Pearson's Chi-squared test with Yates' continuity correction

data: observed

X-squared = 3.2793, df = 1, p-value = 0.07016

> fisher.test(observed)

 Fisher's Exact Test for Count Data

data: observed

p-value = 0.04718

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

 0.01746573 1.11027182

sample estimates:

odds ratio

 0.1617985

5.5 Outlook: linear models

To analyze more complex data such simple tests as described in this chapter have to be

replaced by models. We will have a look at a very simple General Linear Model that could be

used to analyze the furness data. Instead of doing a two-sample t test, we can fit a linear

model to explain metabolic rates by using the function lm() as follows:

> furness$Male <- as.numeric(furness$SEX == "Male")

> model <- lm(METRATE ~ Male, data = furness)

> summary(model)

Call:

lm(formula = METRATE ~ Male, data = furness)

Residuals:

 Min 1Q Median 3Q Max

-1037.97 -510.43 -59.37 524.33 1386.22

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 1285.5 300.1 4.283 0.00106 **

Male 278.3 397.0 0.701 0.49676

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 735.2 on 12 degrees of freedom

Multiple R-squared: 0.03932, Adjusted R-squared: -0.04073

F-statistic: 0.4912 on 1 and 12 DF, p-value: 0.4968

Note that we have created an indicator variable for Male fulmars (1 = Male, 0 = Female). This

model estimates two parameters. The intercept is the estimated metabolic rate for female

53

fulmars, the estimate Male is the difference between the rate of males and females. The fitted

model is: 1285.5 + 278.3 * Male = 1563.8. For male fulmars the estimate 278.3 is added

(multiplied by Male = 1), for female fulmars it is not added (because Male = 0).

We got the two metabolic rates directly by using t.test():

t.test(METRATE ~ SEX, data = furness)

 Welch Two Sample t-test

data: METRATE by SEX

t = -0.7732, df = 10.468, p-value = 0.4565

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

 -1075.3208 518.8042

sample estimates:

mean in group Female mean in group Male

 1285.517 1563.775

5.6 Literature

Dalgaard, P. (2008). Introductory statics with R. New York, Springer.

Quinn, G. P. and Keough, M. J. (2002) Experimental design and data analysis for biologists.

Cambridge University Press.

Altman D. G. & Bland J. M. (1995) Absence of evidence is not evidence of absence. BMJ

311:485.

